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GENERAL INTRODUCTION 

Next to cellulose, starch is the most abundant carbohydrate present in higher plants. A high 

proportion of food energy intake in the world is provided by starch. In addition, starch is also important in the 

paper and textile industries among others. Starch exists in a particle, a starch granule, and accumulates in many 

organs of plants. Only a few plants are economically and commercially used for starch production. Among the 

major starches produced in the United States, maize (Zea mays L.) is the most important crop, providing 95% 

of manufactured starch. 

Starch consists mainly of two components; amylose and amylopectin. Amylose is an essentially 

linear polymer of (l->4)-linked a-D-glucopyranosyl units with some minor branching. Amylopectin is a high-

molecular-weight branched polymer linked together mainly through a-(l->4) linkages but with about 5 to 6% 

of the linkages having a-(l->6) bonds, thus creating branch points. Also present in starch is a third 

component, termed intermediate materials, which possess iodine-binding capacity and a 6-amylolysis limit that 

are between those of amylose and amylopectin (Banks and Greenwood 1975). The structures and amounts of the 

intermediate materials vary with the source and maturity of starch. 

Maize is unique among higher plants for its number of mutants which have been identified and 

examined. Some mutants modify the quantity and quality of starch granules in the endosperm, altering such 

features as percentage distribution of amylose and amylopectin, the molecular weight, and the degree of 

branching. With the natural diversity of properties that exist, maize mutants may be potential natural 

alternatives as modified starches for use in the food industry. 

Although much work has been done on maize mutant starches, few studies have focused on a 

comprehensive evaluation of starch structure and properties. The objectives of this study were to characterize 

the structures and physicochemical properties of maize mutants from one genotypic background, the Oh43 

inbred line, and to determine the relationships between structures and properties of mutant com starches in this 

genetic background. 
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A. Explanation of Dissertation Format 

This dissertation consists of four papers. The first paper, "Thermal and gelling properties of maize 

mutants from the Oh43 inbred line", has been published in the Cereal Chemistry journal. The second paper, 

"Characterization of starch structures of 17 maize endosperm mutant genotypes with Oh43 inbred line 

background", and the third paper, "Physicochemical properties of starches from mutant genotypes of the Oh43 

inbred line", have been accepted for publication in the Cereal Chemistry journal. The fourth paper is entitled 

"Characterization of amylopectin and intermediate materials in starches from mutant genotypes of the Oh43 

inbred line", and will be submitted to Cereal Chemistry journal. The four papers follow the format of the 

Cereal Chemistry journal. The four papers are preceded by a General Introduction and a Literature Review and 

followed by a General Conclusion. Literature cited in the General Introduction and in the Literature Review are 

listed in alphabetical order according to author's name and follow the General Conclusion. 
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LITERATURE REVIEW 

A. Biosynthesis of Starch 

Starch is composed of two main components: a fraction which is essentially linear with some minor 

branching, amylose, and a highly branched fraction, amylopectin. A third component, the intermediate fraction, 

exists in various percentages depending upon the source of starch, and its structures and properties lie between 

those of amylose and amylopectin. Starch types vary in their proportions of these components and in their fine 

structures. 

1. Starch-synthesizing enzymes in normal starch 

Three types of enzymes are required for starch biosynthesis, including those enzymes 1) to form a 

primer, 2) to add glucose units by a-(l^) bonds to that primer, and 3) to introduce a-(l->6) branch points 

(Banks and Greenwood 1975). A primer is a necessary molecule whose ends are required and are the sites where 

new monomers are added (Robyt 1984). The disproportionating enzyme (D-enzyme) is suggested to form 

priming molecules containing approximately 50 glucose units (Banks and Greenwood 1975). There are three 

enzymes involved in catalyzing the synthesis of a-(l->4) glucosidic bonds: phosphorylase, starch-granule-

bound starch synthase, and soluble starch synthase (Shannon and Garwood 1984). Phosphorylase uses glucose-

1-phosphate (G-l-P) as substrates to catalyze the elongating reaction. Bound synthase uses either adenosine 

diphosphate glucose (ADPG) or uridine diphosphate glucose (UDPG) as the D-glucosyl donors but prefers 

ADPG. Soluble starch synthase, however, exclusively uses ADPG as the D-glucosyl donors. 

By studying the waxy maize mutant which has only amylopectin in its endosperm, it was found that 

bound synthase was not involved, suggesting that it makes only amylose (Tsai 1974). It is not clear what 

proportion of a-(l->4) linkages are produced by the synthases relative to the action of phosphorylase. There are 

two types of branching enzymes existing in plants, one that converts amylose into amylopectin and another that 

converts amylopectin into a glycogen-Iike product (Robyt 1984). The branching enzyme catalyzes an interchain 

a-(l->4)-a-(l->6) transfer of one chain to that of another. 
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In vivo, amylose and amylopectin are produced side-by-side in the starch granule. Whelan (1963) 

proposed that amylose and amylopectin might be synthesized on opposite sides of a semi-permeable barrier 

which allows the diffusion of glucoses but not the debranching enzymes. Geddes and Greenwood (1969) 

proposed a multipathway biosynthesis of starch in which the enzymes are absorbed at the surface of a nucleation 

site and the starch granule grows by apposition at the granule surface. French (1972) proposed that starch is 

synthesized at the granule surface but that amylose and amylopectin are oriented in opposite directions, thus 

preventing the action of the debranching enzyme on the amylose molecules. These hypotheses still remain to 

be proven. 

2. Mutant effects 

Maize is the most important crop in the U.S. and most of the com grown in the U.S. Com Belt is 

dent com which is characterized by the presence of vitreous, homy endosperm at the sides and back of the kernel, 

while the central core to the crown of the kernel is soft and floury (Zuber and Darrah 1987). 

Com is genetically the most accessible and the most characterized among the higher plants. There are mutants 

affecting endosperm protein production, such as opaque (o) and floury (fl). The homy (/i) mutant results in a 

loose starch packing without altering starch composition and structure (Fuwa et al 1978). Several recessive 

mutant genes have been identified which alter the quality and quantity of starch in the kemel, in addition to 

modifying the kemel development and kemel phenotype. These mutant genes include amylose-extender (ae), 

brittle (bi), dull {du), shmnken (j/i), sugary (su), and waxy (wx). Mutant genes causing the same effect but 

which are controlled by different genes on different chromosomes are given a number after the named genotype, 

for example sul and su2. The effects of various mutants on kemel phenotype, starch granule size and amylose 

percentage are summarized in Tables I, II, and III, respectively, and the color plates of ae, btl,fll, o2, shl, sul 

and wx mutants have been published (Neuffer et al 1968). 

Amvlose-extender (ae): The amylose extender {ae) gene produces starch with increased apparent amylose 

percentage of up to 75% (Banks and Greenwood 1975), and a kemel of reduced size. Variations in amylose 



www.manaraa.com

Table I. Mature kernel phenotype of normal and selected single, and double recessive maize genotypes® 

Genotype Kernel phenotype^ 
Normal Translucent 
ae Tarnished, translucent, or opaque; sometimes semi-full 
du Opaque to tarnished; S.C-.: Semi-collapsed, translucent with some opaque sectors 
su Wrinkled, glassy; S.C.; Not as extreme as shrunken genotype 
su2 Slightly tarnished, often etched at base 
wx Opaque 
aedu Translucent, not as full as ae; S.C.: Etched, translucent, or tarnished 
aesu Not quite as full as ae, translucent, may have opaque caps 
aesuZ Translucent or opaque, etched base 
ae wx Semi-full to collapsed, translucent or glassy, may have opaque caps; S.C.: 

Slightly fuller, etched, translucent to glassy 
du su Wrinkled, glassy; S.C.: Extremely wrinkled, glassy 
dusul Translucent, etched 
du wx Semi-collapsed, opaque; S.C.: Shrunken, opaque 
su wx Wrinkled, glassy to opaque 
su2 wx Opaque, often etched 
su su2 Wrinkled, glassv 

^Adapted from Garwood and Creech (1972). 

^Kernels approach full size unless indicated as semi-full, semi-collapsed, shrunken, or wrinkled. 

('S.C. means the phenotype observed in sweet com inbreds. 

Table n. Starch granule size of 14 maize genotypes at 24 days postpollination® 

Granule size, um 

Genotype Minimum Maximum 
Normal 7.99 8.53 
ae 5.56 6.32 
du 5.19 5.98 
su 3.06 3.52 
su2 7.68 9.14 
wx 8.61 9.41 
aedu 5.42 6.54 
aesu 5.34 8.20 
aesul 5.57 6.46 
ae wx 5.67 6.03 
du su 3.11 3.85 
dusu2 5.97 8.79 
du wx 6.18 6.86 
su su2 2.56 2.98 

^Adapted from Brown et al (1971). 
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Table III. Apparent amylose percentages of various maize genotypes determined by using iodine binding 

procedure® 

Reference 

Genotype Kramer et al Seckinger and Wolf Holder et al 

(1958) (1966) (1974) 
Normal 27 27 29 
œ 61 57 60 
âi 38 35 34 
su 29 .„b 33 
su2 40 28 38 
wx 0 —• <1 
aedu 57 50 45 
aesu 60 — 51 
aesu2 54 45 56 
ae wx 15 26 26 
du su 63 13 40 
dusu2 47 — 46 
du wx 0 2 
su wx 0 OM 0 
su2 wx 0 0 
su su2 55 30 41 

^Adapted from Shannon and Garwood (1984) Table Vn. Colorimetric measurement of starch-iodine complex 

used to estimate apparent amylose percentages. Genotypes were not incorporated into an isogenic background. 

^Genotype not included in study. 

percentage within inbred lines containing the ae recessive mutant gene result from differences in the genetic 

background, and environmental factors such as growing location, climate, moisture, etc. It was found that ae 

starch has more free starch synthase relative to the branching enzyme-starch synthase complex (Schiefer et al 

1973). Boyer and Preiss (1978) reported that one of the branching enzyme fractions (fraction lib) is absent in ae 

starch. Because of the high amylose content, ae starch gels rapidly and forms high-strength gels which make it 

useful in the confectionery industry. 

The blue value test and the lA method are usually used to determine the apparent amylose content. 

These two methods, however, may overestimate the amylose percentage of ae starch because of the presence of 

the long external chains associated with the ae gene. Yeh et ai (1981) employed gel permeation chromatography 
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(GPC) to fractionate starch components of maize mutant starches. They found a considerable amount of 

intermediate materials between the elutions of amylopectin and amylose of ae starch. These intermediate 

materials were similar to the loosely branched amylopectin reported for ae wx starch (Boyer et al 1976, Yamada 

et al 1978). The ae gene is evidently associated with increased amounts of intermediate materials. Also, there 

is an increased proportion of irregularly shaped starch granules in ae starch (Wolf et al 1964, Banks et al 1974). 

Brittle (htV The dried endosperm of brittle (60-type kernels is greatly collapsed because little starch has 

developed. On drying, the kernel shrinks and collapses into an angular structure with marked concaves and a 

brittle texture. ADPG pyrophosphorylases was found absent (Tsai and Nelson 1966) or low (Dickison and 

Preiss 1969) in bt2 starch. Among the characteristics of gelatinization studied by differential scanning 

calorimetry (DSC), btl starch exhibited lower onset and peak temperatures, and lower enthalpy than those of 

normal com starch (Ninomya et al 1989). The btl starch had an amylose content similar to that of normal com 

but the ratio of A and short B chains to long B chains of amylopectin was higher in btl starch than in normal 

starch (Ninomya et al 1989). 

Dull IduY The appearance of the dull {du) kernel is similar to that of normal com, but the amylose 

percentage of du starch was reported to be 5-25% higher than normal starch depending upon the background of 

the com (Krammer et al 1958, Seckinger and Wolf 1966, Holder et al 1974, Yeh et al 1981, Boyer and Liu 

1985). The ratio of A and short B chains to long B chains of amylopectin also was increased when the du gene 

was present (Inouchi et al 1983,1987). 

Shrunken (sh): The kemel characteristic of shmnken {sh) is similar to but less severely collapsed than 

that of the bt genotype. The sh2 starch is lacking (Tsai and Nelson 1966) or low (Dickinson and Preiss) in 

ADPG pyrophosphorylase activiety. The sh2 mutant originally was suggested as an altemative for sweet com 

because the sugar content of sh2 remains high longer than does that of the sweet com (Laughnan 1953). 

Sugary (suY The traditionally commercial sweet com is homogeneous recessive for sugary-1 {sul), 

which, when dried, shows a glassy, wrinkled, and irregular appearance. The main effect associated with the sul 
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gene is the accumulation of large amounts (up to 25% or more of the dry kernel weight) of phytoglycogen, a 

highly branched and water-soluble polysaccharide (Creech and McArdle 1966). A branching enzyme 

(phytoglycogen branching enzyme) is present in sul starch, which is capable of producing a phytoglycogen-like 

polysaccharide from amylose in vitro (Black et al 1966). The amylose percentage of sul starch is higher than 

that of normal starch but the exact amount varies widely with different methods of analysis and investigators 

(Kramer et al 1958, Holder et al 1974, Yeh et al 1981). 

The su2 genotype has a starch granular size similar to that of normal starch granules but is 10-15% 

higher in amylose content than is normal starch (Kramer and Whistler 1949). However, genetic background, 

genotypes incorporated with the su2 gene, and year of production all affect the apparent amylose percentage 

(Shannon and Garwood 1984). The thermal properties, including onset tempersture, peak temperature, and 

enthalpy, for both gelatinization and rétrogradation measured by DSC of su2 starch are lower than those of 

normal starch (Inouchi et al 1991a, b). The properties of amylose and amylopectin from su2 starch were 

reported to be similar to those of normal starch (Dvonch et al 1951). 

Waxv (wx): The waxy (w%) mutant is unique relative to all other known mutants in blocking the 

accumulation of amylose, and is very low in bound starch synthase activities. The wx kernel displays a 

uniform, marble-like opacity and stains reddish brown with iodine solution rather than blue like nonwaxy 

starches. The wx starch exhibits birefringence that is similar to that of normal starch, and both starches have an 

A-type x-ray diffraction pattern. However, wx starch exhibits a higher gelatinization temperature and peak 

viscosity than does normal starch as measured by DSC (Inouchi et al 1991a) and the viscoamylograph, 

respectively. 

Cooked wx starch paste shows high viscosity and good clarity, and, being essentially free of amylose, 

is resistant to syneresis. The wx starch also constitutes a mjor part of market for all-purpose modified 

thickeners (Moore et al 1985). 

Other mutants: Crossing single mutants to create double, triple, and quadruple mutants results in many 

more unusual com mutant types. The starch properties resulting from these crosses has been the subject of 
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many recent research papers (Yeh et al 1981, Boyer and Liu 1985, Fuwa et al 1987, Sanders et al 1990, Inouchi 

et al 1991a, b). 

B. Molecular Structure of Starch 

1. Fine structure of amylose 

Amylose is essentially a linear macromolecule which is composed of only a-D-glucose residues which 

are linked together by (l->4) bonds with a few (l->6) bonds. The purely linear nature of amylose was generally 

accepted until Peat et al (1949) reported that crystalline sweet potato B-amylase, an enzyme that removes 

maltose units from the non-reducing end of the molecule, only hydrolyzed about 70% of amylose in potato 

starch. It was Peat et al (1952) who first suggested that the barrier to B-amylase in the incomplete hydrolysis of 

amylose was a minor degree of branching by a-(1^6) linkages, the linkages that cause branching in 

amylopectin. By using a mixture of B-amylase and pullulanase, an enzyme that specially cleaves a-(l->6) 

linkages. Banks and Greenwood (1966,1967) proved the presence of branching in amylose as well as in 

amylopectin. They showed quantitative convertion of amylose of potato and wheat starches into maltose by 

observing the reduction of the limiting viscosity number and the increase of B-amylolysis limit to near 100%. 

With the concurrent action of pullulanase and B-amylase on the amylose B-limit dextrins, they further confirmed 

the presence of some a-(l->6) linkages in amylose. Hizukuri et al (1981) also supported the theory for the 

multi-branched nature of amylose after examining starches from several plant sources. 

2. Fine structure of amylopectin 

Amylopectin is a branched molecule with 5-6% of its bonds being a-(W6) linkages. The 

organization of chains within the amylopectin molecule has been the subject of intense research. The 

amylopectin chains can be classified into A, B, and C chains to illustrate the fine structure of amylopectin (Peat 

et al 1956). The A chains are linked to another chain at the reducing ends by a-(l->6) linkages and without 

carrying other chains. The B chains bear other chains as branches and are linked to other chains at the reducing 
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ends by a-(l->6) linkage. There is a single C chain per amylopectin molecule which carries the only reducing 

group in the starch molecule and to which A or B chains may be attached. 

A cluster model, proposed in similar fashions by French (1973) (Fig. 1) and Robin et al (1974) (Fig. 

2), is widely accepted to elucidate the chain arrangement of amylopectin. The cluster model shows many branch 

chains running parallel to each other and can account for the high viscosity and high crystalllnity of 

amylopectin. Additional support for the cluster model of amylopectin was obtained based on chain length 

distribution studies (Manners and Matheson 1981, Hizukuri 1986). 

The fine structure of amylopectin can be deduced through successive degradation by the action of 

debranching enzymes (pullulanase and isoamylase), B-amylase, and amyloglucosidase followed by fractionation 

by gel filtration of the debranched materials. Two major populations were observed for most amylopectins 

debranched by isoamylase. The first fraction (Fl) corresponded to long B chains with an average chain length 

(CL) of about 50 glucose units; the second fraction (F2) included short B chains and A chains with CL of about 

20 glucose units (Akai et al 1971). A trimodal or a polymodal distribution, however, was proposed by 

Hizukuri (1986) after improving the resolution by using high performance liquid chromatography (HPLC). In 

this woric, the B chains were further divided into B1-B4 fractions. The previous fraction Fl then was composed 

of fractions B2, B3 and B4, and fraction F2 contained fractions A and Bl. He suggested that the results showed 

amylopectin being composed of many oriented clusters which were randomly or regularly distributed, and linked 

by long chains extending to two or more clusters. 

3. Intermediate material 

The presence of a starch fraction having properties different from amylose and amylopectin was 

postulated by Lansky et al (1949). The materials exhibited iodine-binding capacity and had a 6-amylolysis limit 

between those of amylose and amylopectin. The amount and structure of intermediate materials differed with 

starch types and maturity of starch (Banks and Greenwood 1975). 

Dais and Berlin (1982) studied this anomolous fraction from wheat by using ^^C-NMR and the results 
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Figure 1. A cluster structure of amylopectin (French 1973). (|) = reducing unit. The model is in accord with 

the structural properties of amylopectin, including the relatively high viscosity, the fibrillar and 

partial crystalline structure, and the relative resistance to degradation by acids and enzymes. 
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0 

B chain 

A chains 

"cluster 

Figure 2. Proposed structure for potato amylopectin. 1 = compact area, 2 = amorphous area, rich in branching 

points; (|) = reducing end group (Robin et al 1974). The B chains would form the backbone of the 

amylopectin molecule and should extend over two or more cluster, each cluster resulting from the 

association of two or three A-chains. 
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indicated that the intermediate fraction had more branch points than did normal amylopectin and had a CL that 

was 20-25% shorter than that of normal amylopectin. Colonna et al (1982,1984) characterized the intermediate 

materials from wrinkled pea starch as a branched fraction with a low molecular weight (MW), but which was 

very polydisperse. Baba and Arai (1984) investigated the intermediate materials from amylomaize starch 

containing 50% amylose and found that the average degree of polymerization (DP) was 250 to 300 glucose units 

per molecule, with four or five branches having a CL of around 50 glucose units. 

C. Organization of the Starch Granule 

Under polarized light, starch shows birefringence and a "maltese cross" pattern where the hilum, the 

growing point of the starch granule, is at the center of the granule. Birefringence implies a high degree of 

molecular orientation within a granule without any indication of crystallinity. Fresh starch granules exhibit 

growth rings which may originate from the concentric deposition of starch. Each ring represents shells of high 

and low starch contents which varied in rate or mode of starch deposition during growth. 

1. Crystalline structure of starch 

X-ray diffraction can provide information about the crystalline structure of starch granules, and the 

relative amount of crystalline and amorphous phases within starch granules. Native starch granules can be 

classified as three types according to their x-ray diffraction patterns: A type, characteristic of cereal starch, such 

as maize, rice, and wheat; B type, characteristic of tuber, fruit and high amylose maize; and C type, with 

characteristics between those of A and B types with examples including bean and pea starches. The 

characteristics displayed by the x-ray pattern depend on the source of the starch, the temperature, and the water 

content (Sair 1967). 

It is generally accepted that amylopectin is responsible for the crystallinity of starch. The waxy maize 

starch, being nearly 100% amylopectin, exhibits birefringence and an x-ray diffraction pattern similar to those of 

normal maize starch. In contrast, high amylose maize starch shows poor crystallinity and weak birefringence. 

The crystallinity domains of starch granules are composed of A-chains and the exterior parts of B-chains of 
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amylopectin. 

2. Fractionation of starch 

Several methods may be used to separate amylose from amylopectin. The methods are all based on 

differential solubility of the fractions in various aqueous media. 

Selective leaching: Amylose molecules diffuse out of the starch granule when starch is subjected to 

temperatures at or slightly above the gelatinization temperature for a period of time while the swollen granule 

still remains intact. With successive leaching at higher temperatures, small MW amylopectin also may leach 

out and contaminate the amylose portion. Amylose then can be obtained by precipitating with a suitable 

alcohol (Whistler 1965). 

Selective precipitation: The most widely adopted method to fractionate starch is selective precipitation. 

The starch granule is first completely dispersed into solution, then amylose is precipitated from solution as an 

insoluble complex by adding a complexing agent. The most important criterion leading to a successful 

fractionation is to disperse the starch as completely as possible, which can be achieved either by liquid ammonia 

treatment followed by dispersion in boiling water or by dissolving in dimethyl sulfoxide (DMSO). A DMSO 

pre-treatment allows the dispersion of starches which are hard to disperse in boiling water and removes 

contaminating fatty acids (Banks and Greenwood 1975). Dispersed starch is thereafter fractionated with butanol 

or thymol (Schoch 1945) which complexes with amylose and forms insoluble crystal. The complex is 

recovered by centrifugation, whereas the amylopectin fraction is recovered from the supernatant. If the initial 

pre-treatment of dispersing starch granules is incomplete, subsequent efforts to purify the amylose fraction will 

be unsuccessful: that is, the amylopectin cannot be removed from the amylose. 

Chromatographic separation: The basis for chromatographic separation of amylose from amylopectin is 

the differences in solubility and/or preferential adsorption of one of the components or its complexes with a 

suitable ligand. Patil and Kale (1973) achieved separation of amylose and amylopectin by adsorbing amylose 
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onto a cellulose column through ethanol ligands. Colonna et al (1985) fractionated of amylopectin by using 

affinity chromatography based on the interaction between concanavalin A (Con A) and amylopectin. Con A is a 

lectin which specifically binds the non-reducing ends of amylopectin to form insoluble complexes. Two 

structural features of amylopectin leads to the special binding with Con A, namely, the hydrodynamic volume 

and the external chain-length. 

3. Arrangement of amylose and amylopectin in the starch granule 

The arrangement of amylose and amylopectin within starch granules relative to each other still needs 

investigation. Nikuni (1978) demonstrated that the amylodextrin of sweet potato starch exhibited various types 

of x-ray diffraction patterns depending on the environmental conditions during the growth period. He proposed a 

model of a starch granule in which amylose exists separate from amylopectin and that is present in the 

amorphous regions. A similar model was proposed by Lineback (1984) in which part of the amylose in the 

starch granule is complexed with naturally occurring lipids, forming a helical amylose-Iipid complex, and the 

outer chains of amylopectin exist as double helices. Recently, Kasemsuwan and Jane (1991), Kasemsuwan 

(1991), and Jane et al (1992) suggested that amylose, instead of being isolated from amylopectin, is distributed 

among amylopectin molecules and is located in both crystalline and amorphous regions. But how the 

arrangement of chains gives either the A or B x-ray diffraction pattern is not clear. 

4. Granule morphology 

The shapes and sizes of starch granules differ from each other and are unique characteristics of the 

sources of the starch. Granules from tuber starches are generally large and ellipsoidal with a hilum that is off 

center, whereas cereal-starch granules are heterogeneous in shape. Granules from normal maize starch are 

polyhedral and range in size from 5 to 25 microns in diameter. Amylomaize starch produces irregular and 

filamentous granules with a size smaller than that of granules from normal maize starch. 

Scanning electron microscopy (SEM) is widely used to elucidate the surface structure of starch 

granules. Light microscopy (LM) also may be used for this puipose but because of the transparent 
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characteristics of starch the interpretation of the internal and surface structures of the starch granules may be 

diffîcult. Hall and Sayre (1969,1970,1971) systematically studied the shapes and surface structures of various 

starches by using SEM and concluded that SEM had great advantages in studying the morphology of starch. 

Beside studying the shapes and surface structures of starch granules, SEM also can be used to study the changes 

during the gelatinization process, interactions between starch and water, and granular changes caused by different 

treatments. 

5. Susceptibility to enzyme degradation 

Starch-degrading enzymes that can hydrolyze a-D-glycosidic bonds and release energy may be divided 

into three types; exo-acting, endo-acting, or debranching enzymes. Exo-enzymes, including B-amylase, 

phosphorylase, and glucoamylase, degrade amylose and amylopectin by the successive removal of low-MW 

products from the non-reducing ends. Beta-amylase and phosphorylase cannot bypass branching points, thus 

producing dextrins of both high and low MW. Glucoamylase additionally is able to hydrolyze a-(l->6) 

glucosidic linkages and, thus, converts starch to glucose. Endo-enzymes, applied exclusively to «-amylases, 

hydrolyze a-(l-W) glucosidic bonds in a random pattern. The end products from a-amylolysis of amylose are 

mainly maltose and glucose, and of amylopectin are residual branched a-limit dextrin as well as linear 

oligosaccharide (Roberts and Whelan 1960, Brammer et al 1972). The «-amylase works on both raw and 

gelatinized starches, whereas 6-amylase transforms gelatinized starch into about 60% maltose but has no action 

on raw starch (Guilbot and Mercier 1985). The class of debranching enzymes is composed of R-enzyme, 

pullulanase, and isoamylase, and is responsible for degrading a-(l-)6) glucosidic linkages in amylopectin and 

the outer chains of the a- and Q-limit dextrins. The susceptibility of starch granules to «-amylase depends on 

the source of the starch and on the a-amylase. Among the granular starches investigated by Leach and Schoch 

(1961), waxy maize starch was the most susceptible to bacterial a-amylase and amylomaize starch was the least 

susceptible. 
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D. General Properties of Starch 

1. Gelatinization 

Starch is insoluble in cold water but swells reversibly to a limited extent through hydrogen bonding. 

For some applications it is necessary to disrupt the granular structure, which leads to swelling, hydration and 

solubilization of starch molecules which is referred to as gelatinization. Gelatinization is described as " the 

phenomena of collapse (disruption) of molecular orders within the starch granule manifested in irreversible 

changes in properties such as granular swelling, native crystalline melting, loss of birefringence, and starch 

solubilization" (Atwell et al 1988). The temperature range in which gelatinization occurs is different for each 

starch type, with the following examples noted: wheat, 58-64°C; potato, 59-68°C: maize, 62-72°C; and rice, 68-

78°C (Lineback 1984). The gelatinization process is affected by the fine structure of starch components and the 

percentage distribution of amylose and amylopectin. Different starch genotypes, therefore, gelatinize at different 

temperatures. For example, high-amylose starches gelatinize at higher temperatures than do normal and waxy 

starches. 

There are many methods for measuring gelatinization and they are described as follows: 

Light microscopy: The loss of birefiringence, a characteristics of the gelatinization, can be followed by 

using an optical microscope equipped with crossed polarizers and a heating stage (Watson 1964). During 

gelatinization, starch absorbs water and swells, thus the orientation within the starch granule is destroyed 

resulting in loss of granule birefringence. 

Scanning electron microscopy: The transformation of starch granular shape occurring during 

gelatinization has been studied by using SEM (Hill and Dronzek 1973, Miller et ai 1973, Hoseney et al 1977, 

Lineback and Wongsrikasem 1980). The SEM can show in detail the changing structure of the granule 

throughout the gelatinization process. 

Viscometrv: The changes in viscosity of a starch slurry subjected to a programmed cycle of heating and 
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cooling cycle with the Brabender viscoamylograph can provide information on gelatinization and on the 

properties of the cooled paste (Zobel 1984). The temperature of the first rise in viscosity is called pasting 

temperature, which is highly dependent on starch concentration and generally is higher than the temperature 

determined from the loss of birefringence. The peak viscosity, the stability of the starch paste, and the set-back 

produced by cooling are also points of interest. 

Swelling and solubilitv determination: The use of swelling power and a solubility curve to characterize 

starch was first developed by Leach et al (1959). The curves are derived by plotting the swelling power or 

solubility against temperature at certain degree intervals over the entire pasting temperatures. It is usually used 

to determine swelling power and solubility at 85°C, which is suitable for single-point characterization. Each 

starch has a characteristic pattern of swelling and solubility. 

Nuclear magnetic resonance: The gelatinization of starch can be followed at the molecular level by using 

either high-resolution or wide-line proton magnetic resonance (pmr) techniques. At the initiation of 

gelatinization there is an increase in chain mobility of starch granules which decreases the spectral line-width 

and causes an abrupt change in line width (Jaska 1971). 

Differential scanning calorimetrv: Differential scanning calorimetry (DSC) monitors the heat change 

associated with the gelatinization process through a programmed cycle and records heat flow as thermal events 

occur. The difference in heat flow between a sample and a reference is recorded as a peak. Stevens and Elton 

(1971) first applied DSC to determine the enthalpies of gelatinization of several starches. The DSC is easy to 

operate, requires only a small sample size, and can record both gelatinization temperature and enthalpy 

(Nakazawa et al 1985). 

X-rav diffraction: The starch crystallites yield reflection from crystal plane as determined by X-ray 

diffraction. After gelatinization, the melting of starch crystallites, these reflections disappear and a broad halo 

appears, indicating a change from a crystalline state to an amorphous state (Zobel et al 1988). 
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Other methods: Light transmission (Longley and Miller 1971), enzymatic analysis (Shetty et al 1974), 

and laser light scattering (Wilkes 1974) also may be used to measure starch gelatinization. 

2. Pasting 

Pasting is "the phenomenon following gelatinization in the dissolution of starch. It involves granular 

swelling , extnidation of molecular components from the granule, and eventually, total disruption of the 

granules" (Atwell et al 1988). The formation of a starch paste is accompanied by a large increase in viscosity 

because of the effects of the dissolved swollen starch granules. Therefore, the properties of starch pastes are 

commonly measured by using methods for determining viscosity, such as the Brabender viscoamylograph 

(Shuey and Tipple 1980), the Brookfield viscometer (Smith 1964), and rheometers. 

3. Rétrogradation 

Rétrogradation of a starch paste is "a process which occurs when the molecules comprising gelatinized 

starch begin to reassociate in an ordered structure. In its initial phases, two or more starch chains may form a 

simple juncture point which then may develop into more extensively ordered regions. Ultimately, under 

favorable conditions, a crystalline order appears" (Atwell et al 1988). Rétrogradation is caused by the formation 

of hydrogen bonding between hydroxyl groups and by hydrophobic interactions. The chain length or MW of 

amylose is related to the tendency to retrograde (Suzuki et al 1981, Takeda et al 1983). Amylose molecules, 

with a DP of around 80, are mainly responsible for rétrogradation (Guilbot and Mercier 1985). However, a 

phenomenon related to rétrogradation, bread staling, involves mainly amylopectin rather than amylose (Schoch 

and French 1947). Bread staling causes bread to become firm due to the recrystallization of amylopectin, but 

there may be some interaction with amylose during recrystallization (D'AppoIonia and Morad 1981). 

The rate of retrogradation is affected by many factors, such as temperature, source and concentration of 

starch paste, pH and the presence of salt and other chemical agents. In general, cereal starches retrograde more 

quickly than do tuber starches, and the retrogradation rate is enhanced at a temperature of about 0-4°C and at pH 

6 (Collison and Elton 1961). 
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E. Methods for Measuring Âmylose, Âmylopectin and Intermediate Materials 

1. Iodine affinity (lA) 

The linear fraction of starch, amylose, can interact with iodine to generate a helical inclusion complex 

with iodine in the central cavity and to give a blue color. In contrast, the branched fraction, amylopectin, has a 

low affinity for iodine and gives a red color. Because of the distinct feature that amylose binds about 20% of its 

own weight of iodine whilst amylopectin binds none, the ratio of amylose and amylopectin present in a starch 

sample can be determined by using a potentiometric technique, iodine affinity (lA) (Schoch 1964). The amylose 

percentage calculated from the lA method, however, is considered as "apparent amylose" (Montgomery et al 

1961). The presence of branched molecules with long external chains overestimates amylose content; likewise, 

the presence of amylose with short chains underestimates amylose percentage. 

2. Gel permeation chromatography (GPC) 

Based on the difference in mloecular size, starch can be fractionated into two major fractions, 

amylopectin and amylose, by using GPC. The amylopectin fraction, being a large molecule, is eluted earlier 

than the amylose fraction and, thus, can be separated from amylose. The amylopectin and amylose fractions can 

further be subfractionated into a graded series of molecules with a broad distribution of MW (Erlander and French 

1958, Banks and Greenwood1968) because both fractions are polymolecular and polydisperse. 

The presence of intermediate materials is evident by comparing the GPC profile of a mixture of 

purified amylopectin and amylose with that of normal com starch (Boyer et al 1976, Yeh et al 1981). Baba and 

Arai ( 1984) separated intermediate materials from amylopectin by precipitating amylose out from starch with 

butanol, then, fractionating butanol non-precipitating materials by using GPC. 

3. High-performance size-exclusion chromatography (HFSEC) 

More recently, high-performance size-exclusion chromatography (HPSEC) has been employed in starch 
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research. Size exclusion chromatography (SEC) is a liquid chromatographic technique to separate molecules by 

differences in size and to obtain MW distribution (Poole and Schuette 1986). Traditional (low-pressure) SEC 

requires long time for fraction collection and chemical analyses. The combination of high-performance liquid 

chromatography (HPLC) with SEC gives separations similar to those from low-pressure column but with less 

time and with the potentially high resolution. Most of the work has been done on the structure of amylose 

(Hizukuri and Takagi 1984, Takeda et al 1986, Takeda et al 1989a, Takeda et al 1989b) and on the chain length 

distribution of amylopectin (Hizukuri et al 1986, Takeda et al 1987, Hizukuri and Maehara 1990, Koizumi et al 

1991). HPSEC has proven to be a fast and accurate technique for determining the structures of starch 

components. 

F. Chemical Modifications of Starches 

The use of native starches is limited in many commercial applications because of many shortcomings 

which include unrestricted swelling after cooking, instability of the starch paste to shear or low pHs, and the 

tendency of starch sols to retrograde during cooling (Wureburg 1986). Modified starches are developed to modify 

the gelatinization and cooking characteristics for expanding the use of starches to provide desired functionality 

such as thickening, gelling, binding, adhesive, and film-forming properties. 

Oxidized starches are used primarily in the paper industry and are also widely used in breaded foods 

because they improve the adhesion of starch batters (Rutenberg and Solarek 1984). Cross-linked starches are 

used in baby foods, salad dressings, and fruit pie fillings in which a stable, high-viscosity starch paste is needed ' 

(Whistler and Daniel 1985). Starch acetates with a low degree of substitution (DS) are used in canned, frozen, 

baked, and dry foods because of their stable viscosity which prevents syneresis and development of cloudiness at 

low temperatures (Rutenburg abd Solarek 1984). Hydroxypropyl-starches impart a smooth, thick, clear, and 

non-granular texture to be used in gravies and sauces. Starch monophosphates are useful in frozen foods because 

they have excellent fireeze-thaw stability (Whistler and Daniel 1985). Cationic starches are often used as 

additives in paperboard packaging. Acid-modified starches are used in the manufacture of confections because 

they can form firm gels on cooling. Through these chemical modifications, the use of starches can be increased 
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in the food industry. 

G. Applications of Starches in Foods 

Starches used in the food industry perform two basic functions: as a stabilizer in food and as a 

processing aid to facilitate manufacturing (Moore et al 1984). As a stabilizer, starches provide characteristic 

viscosity, texture, mouth-feel, and consistency in either a native granular or gelatinized form. As a processing 

aid, starches prevent materials from sticking together to improve processibility. 

Several characteristics about the foods themselves, such as cooking temperature and time, moisture and 

dissolved solids content, pH, and physical agitation must be considered in making the proper starch selection for 

food production (Moore et al 1984). The type of equipment, order of addition of other influencing ingredients, 

and processing requirements also should be taken into consideration (Langan 1986). Native starches in various 

forms are used in large volumes throughout the food industry such as coatings, candy jellies, and salad 

dressings. The canning industry requires both a retort temperature of 120°C for 20-60 min and processing at 

145°C for a few seconds. Desired starches, thus, should gelatinize at elevated temperatures allowing canned 

materials to remain fluid in the early heating stages to facilitate heat penetration. Some processes require the 

application of heat in an acid environment over a period of time. Modified starches are usually employed for 

this purpose. The frozen industry requires starches with good freeze-thaw stability. High-amylose starch 

improves the manufacture of jelly candy because it gels rapidly and forms high-strength gels, whereas native 

waxy starch, with chemical or physical modification, is suitable for thickening fruit pies and many prepared 

canned, and frozen foods because it develops heavy viscosity and good clarity, and is resistant to syneresis 

(Moore et al 1984). Pregelatinized or cold-water swelling starches are gaining popularity in convenience 

package mixes and in the manufacturing process that extrudes and cuts doughs for baking (Moore et al 1984). 

Limited availabilty and high prices of natural ingredients have stimulated the investigation and development of 

new suitable alternatives for the diverse use of starches in foods. 

There is a growing interest in studying maize mutants because they offer alternatives to modified 

starches in many applications. How starch biosynthesis is affected by the presence of mutant genes still is not 
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completely clear. It would be a great advantage to understand the relationships between starch structure and 

function. Mutants of com with many possible variations in starch structure could provide materials for such a 

study. By placing all these mutants in the same dent com background the effects of the mutants on starch 

structure and function can be compared. 
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ABSTRACT 

Starches were isolated from the maize (Zea may L.) inbred line, Oh43, and its single mutants [amylose 

extender (ae), brittle-1 (btl), brittle-2 (bt2), dull-1 (dul), floury-2 (fl2), homy (h), shrunken-2 (sh2), sugary-1 

(sul), and waxy (wz)]. and the double-mutant combinations within Oh43. Differential scanning calorimetry 

(DSC) was used to determine the onset temperature (TQ), range, enthalpy (AH) of gelatinization and 

rétrogradation, and percentage of rétrogradation (r%). The gel strength was measured by using a Voland-Stevens 

texture analyzer. For gelatinization, the starches of wj: dul and sh2 dul had the highest TQ. Double-mutants ae 

bt2 and bt2 dul had the highest Tp of rétrogradation. The highest AH of gelatinization was observed for h wx. 

The gelatinization enthalpy peak for btl starch had a characteristic low temperature shoulder and wide range. 

Compared with the respective single mutants, most double-mutant combinations had higher TQ and AH for 

gelatinization and lower TQ for rétrogradation. For gel strength, the dul starch gave the lowest values for 

Hrmness and stickiness among the samples. Double mutants generally had gel strength measurements lower 

than those of the single mutants btl, bt2,fl2, h, and sh2, but higher than those of dul. 
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INTRODUCTION 

Several endosperm mutants that are genetically recessive have their primary effect on the synthesis of 

starch or on a particular protein in maize {Zea mays L.) (Dcawa et al 1981, Yeh et al 1981, Inouchi et al 1983, 

1987, Fuwa et al 1987, Sanders et al 1990). Identified recessive mutant genes include; amylose extender {ae), 

brittle {bt), dull {du), floury (/7), homy {h), opaque {o), shrunken {sh), sugary {su), and waxy (wjc). These 

mutants cause variation in amylose percentage or the total amount of starch accumulation. The nomenclature of 

these mutants is, in part, based on the effect that these mutant genes exert on the appearance or phenotype of the 

kernel. Some genotypes that cause the same effect but are controlled by different genes on different 

chromosomes are given a number after the named genotype (for example, sugary-1 and sugary-2 [iM2]). 

Because of the diverse applications of starch in industries, chemical and/or physical modifications are 

often made to the starches to meet the needs of the users. However, with the increasing difficulty in achieving 

regulatory approval of chemically modified starches in the food industry (Sanders et al 1990), there is a great 

potential for novel starches from mutant genotypes that bear desired properties. Furthermore, such novel 

starches might replace chemically modified starches, thereby providing economic advantages by reducing the cost 

of processing. 

The mutant genes can influence the total starch content and the amylose-amylopectin ratio. The ae 

mutant is associated with a high amylose content of the endosperm starch, whereas the wx starch has essentially 

no amylose (Shannon and Garwood 1984). In differential scanning calorimetry (DSC) analyses, the wx starch 

showed thermal behavior similar to that of normal com starch. The ae starch, however, did not exhibit a clear 

peak, and the endotherm extended beyond 100°C (Stevens and Elton 1971). The special properties of different 

mutants, such as gelatinization characteristics and susceptibility to enzymes, have been described elsewhere 

(Inouchi et al 1984, Boyer and Liu 1985, Krueger et al 1987b, Brockett et al 1988, Ninomya et al 1989, Sanders 

et al 1990). 

The double-mutant combinations create additional modifications in the structure and properties of starch 

granules (Dcawa et al 1981, Yeh et al 1981, Fuwa et al 1987, Brockett et al 1988, Ninomya et al 1989, Sanders 
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et al 1990). For example, when the ae gene was introduced as a double mutant, amylose content increased and 

an intermediate fraction and amylopectin with longer branches were found (Ikawa et al 1981). The DSC 

thermograms of double mutant starches with the wx gene shifted to a narrower temperature range (R) compared 

with those of their respective single mutants (Sanders et al 1990). 

Important physical properties of starches include the thermal requirements for gelatinization, the 

susceptibility of gelatinized starch to rétrogradation, and the shear modulus of the starch gel. The temperature of 

gelatinization can be studied by using DSC or by loss of birefringence under a polarized light microscope 

equipped with a hot stage. DSC has been widely used to study the thermal behavior of starch because it requires 

only a small sample size, both gelatinization temperature and enthalpy can be obtained, and it is easy to operate 

(Nakazawa et al 1985). DSC also can be applied to retrograded starches to measure transition temperature and 

enthalpy. 

The objectives of the present work were to examine the thermal properties of native and retrograded 

starches and gelling properties using single and double mutants of Oh43. 
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MATERIALS AND METHODS 

Materials 

Mature kernels of Oh43 and its single and double mutants (Table I) were used in this study and were 

identified according to their kernel phenotypes (Garwood and Creech 1972). Single mutants were obtained from 

the Maize Genetics Cooperation Stock Center at Urbana, IL. Single mutants were crossed in all combinations 

and self-pollinated. The double mutants were selected on the basis of having kernel phenotypes different from 

Oh43 and their respective single mutants. They were grown either in a winter nursery in Puerto Rico during 

1989-1990 or near Ames, L\, in 1990. Plants were self-pollinated or crossed as appropriate, and ears were 

harvested at full maturity. After harvest, com ears were dried at 38°C for five days to 13% moisture content. 

The samples were stored in a cold room at 4°C and 45% relative humidity until analyzed. 

Single-Kernel Starch Isolation 

Starches were isolated as described by White et al (1990) except that a 30-jim sieve was used and starch 

from two kernels was extracted at a time. Two separate extractions per starch type were run, and starch from a 

single isolation was used to determine both thermal and gel properties. 

Differential Scanning Calorimetry 

The DSC studies were performed by using a Perkin-Elmer DSC 7 analyzer equipped with a thermal-

analysis data station (Perkin-Elmer Corp., Norwalk, CT). The gelatinization of starch was accomplished as 

previously described by White et al (1990), and refrigerated-storage rétrogradation was done by the procedure of 

White et al (1989). Approximately 3.5 mg (dry-weight basis [dwb]) of starch was weighed accurately into an 

aluminum pan, and 8 mg of distilled water was added. The pan was hermetically sealed and allowed to 

equilibrate at least 1 hr before analysis. Samples were heated from 30 to 110°C at a rate of 10°C/min. Enthalpy 

(AH), onset (TQ), and peak (Tp) temperatures were computed automatically. At the water level used, the 

endotherms were essentially symmetrical, which allowed the total gelatinization range to be computed as 2(Tp-
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Tq) as described by Krueger et al (1987a). The results are the average of three scans each for two extractions 

from one sample. Enthalpies were calculated on a starch dry-weight basis. The peak height index (PHI), which 

is the ratio AH/(Tp-To), was calculated to allow a quantitative evaluation of variations in peak shape (Krueger et 

al 1987a). 

Gel Properties 

Limited quantities of starches were available, so the preparation of starch gels was adapted to a small 

size as follows. Starch (60.0 ±0.1 mg, dwb) was put in a vial (4.7 cm high and 1.5 cm diameter), and distilled 

water was added to a total weight of l.(X) g to make a starch gel of 6% (w/w). A half-inch stirring bar was 

inserted into the vial, the vial was placed on a cold hot plate stirrer and stirred slowly until the starch was 

dispersed. The sample then was heated to boiling with stirring, held for 20 sec, and removed from the hot plate 

stirrer. High amylose starches were boiled for 2 min to ensure complete gelatinization. The stirring bar was 

carefully removed, and the vial was tapped gently on a hard surface to redistribute the gel to the bottom of the 

vial. The vial was covered with Parafilm® and placed at 25°C for 4 hr to allow the gel to set and cool before 

analysis. 

The resistance to penetration of the gel was determined by using a model TA-100 Voland-Stevens 

texture analyzer (Voland Corp., Hawthrone, NY) fitted with an L6512 series flat-bed recorder. The gel was 

compressed at a speed of 0.2 mm/sec to a distance of 3 mm with a punch probe (TA53,3 mm diameter) with 

the chart recorder speed at 10 cm/min. The peak height at 3-mm compression was termed firmness, and the 

negative peak height during retraction of the probe was termed stickiness (Fig. 1) according to Takahashi and 

Seib (1988). One gel was measured for each starch extraction. 

Statistical Analyses 

Analysis of variance and data and starch group comparisons were computed with the General Linear 

Model Program (SAS 1990). Multiple comparisons were done by least significant difference (LSD) after a 

preliminary F test (Steel and Torrie 1960). Correlation analyses were done on the enthalpy data of DSC and on 
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the gel-strength data. 



www.manaraa.com

RESULTS AND DISCUSSION 

Gelatinization Properties 

The DSC properties of starches of Oh43 and its single mutants and double mutants are summarized in 

Table I, and LSDs are listed for each property. A summary of significant differences among DSC properties of 

single- and double-mutant starches is presented in Table II, and some representative thermograms are shown in 

Figures 2 and 3. Mutants that did not grow in Puerto Rico during 1989-1990 were grown in Ames, lA, in 

1990. This environmental effect may affect their DSC properties (White et al 1991). Among the single 

mutants, the onset temperature of gelatinization (Tq) was highest for ae, at 68.7°C, and lowest for btl, at 

63.4°C. The temperature range (R) and enthalpy of gelatinization (AHg) of ae were larger in this study than in 

previous studies (Krueger et al 1987b, Brockett et al 1988, Sanders et al 1990) but smaller than in other studies 

(Wootton and Bamunuarachchi 1979, Biliaderis et al 1980). The reported differences may be attributed to 

environmental effects (White et al 1991). The wx genotype produced higher TQ and AHg for gelatinization than 

did other single mutants, which was similar to previous reports (Inouchi et al 1984, Fuwa et al 1987). 

The PHI, (AH/LTp-Tq]), was developed by Krueger et al (1987a) to differentiate raw and annealed 

starches. The PHI provides a numerical value that describes the relative shape of the endotherm; e.g., a tall, 

narrow endotherm has a higher PHI than does a short, broad endotherm. The thermogram of btl exhibited an 

unusual low-temperature shoulder, that gave btl starch the lowest TQ, the broadest R, and the lowest PHI 

(excluding ae) among single mutants (Fig. 2). The dul starch had the lowest AHg (2.1 cal/g), which was lower 

than the same genotype (2.9 cal/g) reported in earlier studies performed at the same starch/water ratio (Inouchi et 

al 1984, Fuwa et al 1987). The AHg values of btl, dul, sh2, and sul were lower than that of the normal starch 

(P<0.05). The normal, ae, sh2. and wx starches had higher PHI than those reported by Krueger et al (1987a, b). 

The PHI values for normal starch (Oh43) varied from 0.32 to 0.43 in their study ( 1987a). compared with 0.67 in 

our study. 

Starches from the double mutants had TQ values for gelatinization that ranged from 65.0°C for sh2 h 

to 70.9°C for wx dul. The R ranged from 4.9°C for h wx to 10.9°C for sh2 wur. The h wx starch showed a 
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very sharp and well-defined endotherm, giving it the narrowest R, the highest AHg and the highest PHI among 

double mutants (Fig. 3). The wx sul also exhibited a sharp endothermic peak and a high AHg similar to that of 

the h wx (Fig. 3). The double-mutant combinations containing the wx gene {h wx, wx sul, and wx dul) had 

higher AHg values than that of the normal starch (P<0.05), which agreed with results of Sanders et al (1990). 

The PHI values for single and double mutants were higher than reported previously (Krueger et al 1987a, b) with 

hbtl.h wx, and wx smI having PHI values larger than one. 

When the mutants containing the same recessive mutant gene were grouped and compared with other 

mutants, some trends were noted (Table II). For gelatinization, the double-mutant combinations had 

significantly higher Tg and AHg, and lower R values than the single mutants (P<0.01). No significant 

difference was found, except AHg for the Oh43 versus double mutants comparison, when Oh43 was compared 

with either single or double mutants. When the ae gene was introduced, a broad R for the gelatinization peak 

was seen. The mutants containing the bll or the dul gene exhibited significantly lower Tg and higher R than 

other mutants. In contrast, the h or wx gene produced mutants with high Tq and low R values. As indicated 

earlier, the mutants with the wx gene produced significantly higher AHg (P<0.01) than did the other mutants. 

Most mutants containing the same recessive mutant gene possessed distinctive thermoproperties, which may be 

useful as an index or reference in the mutant screening process. 

Correlation coefficients (r values) were determined among all DSC parameters; however, few r-values 

were greater than 0.5. The r value between Tq and AHg for single mutants was 0.72, indicating some 

correlation between Tq and AHg. But the r value between these same parameters was only 0.29 for the double 

mutants. These different r values for the same parameters support the idea that the influence of a particular gene 

on thermal properties varies according to the presence of other mutant genes (Sanders et al 1990). Furthermore, 

the thermal properties are influenced by structural characteristics of the starch, such as amylose-amylopectin 

ratio, differences in fine structure, and degree of crystaliinity. 

Gelatinization is a semicooperative process (Donovan 1979, French 1983) in which the amorphous 

regions take up water and swell to a gel phase, generating strain on the crystalline regions. This action stresses 
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the crystallites so that they cooperatively melt at a lower temperature than when not associated with the gel 

phase. The structural relationship between amorphous regions and crystallites in a starch granule is responsible 

for the shape and Tg of the endotherm (Krueger et al 1987b). The wx starch, being primarily amylopectin, 

possesses a different amorphous-crystalline structural relationship than does the normal starch granule. Mutant 

combinations with the wx gene produce endosperm starch with no amylose (Boyer et al 1976, Ikawa et al 1981, 

Yeh et al 1981, Boyer and Liu 1985, Fuwa et al 1987, Sanders et al 1990). Both Stevens and Elton (1971) and 

Inouchi et al (1984) reported higher AHg and R for wx starch than for normal starch and concluded that there is a 

more important contribution from amylopectin than from amylose in gelatinization. 

In our study, the wx starch showed a sharper endotherm and narrower R than did the normal starch and, 

therefore, a higher PHI value. The narrowed R for gelatinization of wx starch might suggest that the melting of 

starch is highly cooperative and that more energy is needed for initiation in the absence of the amylose-rich 

amorphous regions (Krueger et al 1987b). Some double mutants containing the wx gene {fl2 wx, h wx, sul 

wx, wx dul, and wx sul) had higher PHI than that of normal starch, but ae wx, btl w.»:, and bt2 wx had lower 

PHI values. Although the sul wx and wx sul starches contained the same recessive mutant genes, they 

exhibited different thermograms (Fig. 3), which may be attributed to the different contributions originating from 

female (pistil) or male (pollen) (Yamada et al 1978). These observations suggest that the fine structure of 

amylopectin among different double mutants containing the wx gene may differ and that amylopectin plays a 

complex role in determining the thermal properties of starch, as suggested by Sanders et al (1990). 

The ae, dul, and sul genotypes are reported to increase amylose content of starch (Ikawa et al 1981, 

Yeh et al 1981, Inouchi et al 1983, Boyer and Liu 1985). This increase in amylose may dilute the crystalline 

regions. Consequently, the crystallites may be so far apart that cooperative melting is not possible. Low AH 

and PHI were observed in the ae, dul, and sul starches, perhaps because of this dilution theory. Inouchi et al 

(1984) also reported that the AH values of the starches increased with decreasing apparent amylose contents. 

Boyer et al (1976) showed that the ae wx starch possessed longer outer chains that did the wx starch. In the 

present study, the longer exterior chains of ae wx starch may be responsible for a broader R, lower AH, and 

lower PHI than those for wx starch. In a similar work by Yeh et al (1981), most of the mutant combinations 
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containing the ae gene produced long exterior chains of amylopectin and, thus, relatively broad endotherms as 

indicated by their low PHI values. The results suggest that the ratio of amylose to amylopectin in the starch 

granule, the distribution of amorphous and crystalline regions, and the fine structure of amylopectin are all 

important in determining the gelatinization properties of the starch. 

Refrigerated Storage Rétrogradation 

The DSC properties of the starch samples stored at 4''C for 7 days (rétrogradation) are reported in Table 

I and summarized group comparisons are listed in Table II. The endothermic transition for all recrystallized 

starches occurred at a lower temperature than that of gelatinization (P<0.01), with values ranging from 38.2°C 

for h bt2 to 44.4°C for ae bt2. Also, the R for the enthalpy peak of rétrogradation was broader than that of the 

native starch (P<0.01). When the gelatinized starch molecules reassociated during storage at 4°C, they formed a 

weaker structure than in the native molecules, as indicated by the smaller enthalpy values of rétrogradation 

(AHj.). The AHj for all samples ranged from 0.9 for sul to 1.9 cal/g for wx. The AHj. of ae was difficult to 

determine because its broad range extended beyond 100°C, so these data were omitted. For most samples, the 

ratio of AHj. to AHg (r%) was close to 50%, meaning that the energy required to regelatinize the starches after 7 

days of storage at 4°C was about half of its original value. The r% for the dul starch was far higher than the 

others, at 73.5, which simply reflected its low AHg value. 

The W.Ï starch displayed the highest rétrogradation tendency, as shown by its highest AH^, which 

supports the idea that amylopectin is responsible for the rétrogradation as measured by using DSC (Russell 

1983, Eliasson 1985, Eliasson and Ljunger 1988). All the double mutants containing the wx gene had lower 

AHf than did the wx starch (P<0.05). Although the wx gene is epistatic in its ability to produce amylopectin, 

these molecules may vary in structure once the wx gene is combined with another mutant gene. Thus, although 

amylopectin plays an important role in the retrogradation of starch during storage (White et al 1989), the fine 

structure of amylopectin may play an even more important role in determining the thermal behaviors of starch. 

There were no significant differences between Oh43 and single mutants or between Oh43 and double 

mutants for the retrogradation properties (Table II). The double mutants had significantly (P<0.05) lower TQ 
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and broader R than those of the single mutants for rétrogradation. The mutants containing the btl gene had 

higher TQ and mutants containing the fl2 or h or sh2 gene had lower TQ than other mutants (P<0.01). No 

significant difference in AHf was found for all comparisons. 

The major variations in the fine structure of amylopectin are the chain length, the distribution of chain 

lengths, and the ratio of short to long chains (Kalichevsky et al 1990). The branching chain length of 

amylopectin may have an important effect on the rate of aggregation. As mentioned earlier, starches containing 

the ae gene have longer exterior chains, which may result in a steric effect that decreases the association of starch 

molecules and lowers AHj. compared with that of the wx starch (P<0.05). On the other hand, the double-mutant 

combinations containing the wx gene did not exhibit higher AHj. compared with double mutants not containing 

the wx gene in the present study (Table II). These results suggest that, although DSC evidently is sensitive to 

the amylopectin fraction of the retrograded starches, another type of molecular interaction may also be involved, 

such as an interaction between amylose and amylopectin (Miles et al 1985a). 

Gel Properties 

Table III lists the gel properties of all samples as measured by the texture analyzer. A typical load-

penetration curve of commercial com starch at 6% (w/w) solid is shown in Fig. 1. Because of the limited 

sample size available, it was not possible to make large gels in which a freshly cut surface could be exposed, as 

described by Takahashi and Seib (1988). Therefore, all the load-penetration curves in this study showed a drop 

in force after the probe penetrated the gel surface (noted at about 1.8-mm distance on Fig. 1) likely resulting 

from the break through the "skin" on the gel surface. Nonetheless, the peak height at 3-mm compression (noted 

at about 3.8-mm distance on Fig. 1) was an accurate measure of inside gel firmness as measured by Takahashi 

and Seib (1988). All of the wjc-containing starches and a few others formed weak gels not measurable under the 

test conditions because the gels were too soft. The present conditions required a force of 0.5 g to be reached 

before the probe traveled its 3 mm through the gel. Thus, the probe hit the bottom of the vial before traveling 

the required distance through the soft gels. The firmness of the starch gels ranged from 0.8-g force for the diil 

starch to 3.3-g force for the sh2 and ae sh2 starches. The ae sfi2 exhibited the highest stickiness at 1.2-g force. 
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whereas dul,fl2 btl, sh2 sul, and sul h had the lowest stickiness scores of 0.4-g force. 

Correlations between gel strength parameters and all DSC thermal behavior parameters were run, with 

most correlation values being less than 0.6, so the data are not shown. Firmness and stickiness values 

correlated somewhat with AHj with r values of -0.74 and -0.62, respectively. These negative correlations 

suggest that starches with greater tendency to retrograde produced less firm and less sticky gels. Much of this 

behavior could be explained by the effects of wx versus ae starch. 

Initial gel formation has been reported to correlate with the amylose fraction, which, being linear, has 

the ability to quickly form junction zones, reassociate, and reestablish intermolecular hydrogen bonds (Howling 

1980). The increase in the firmness of a starch gel after the initial cool down is related to the crystallization of 

amylopectin within the gelatinized starch granule (Ring et al 1987). Because it is a branched molecule, 

amylopectin cannot form junction zones and, thus, maintains a poor resistance to penetration. Some researchers 

propose that gelation of an amylose dispersion occurs only after exceeding a certain concentration (C*) (Miles et 

al 1985a, Ring et al 1987). The gel formation arises as a result of a phase separation that produces polymer-rich 

and polymer-deficient regions. If the amylose concentration is sufficiently high, the polymer-rich regions form 

an interconnected gel network (Miles et al 1985a). The C* for amylose of molecular weight 5x10^ was -1.5% 

(Miles et al 1985a). At a fixed molecular weight, the branching of amylopectin reduced the hydrodynamic 

volume, resulting in a C* that was shifted toward a higher value than for a linear chain. 

By studying the gelation of amylose and amylopectin. Miles et al (1985a) and Ring et al (1987) found 

that the formation of a network, as measured by the shear modulus, lagged behind the development of 

crystallinity, as detected by X-ray diffraction and DSC. The low correlations between TA and DSC results in 

the current study support these results. Miles et al (1985b) also showed that the formation of a starch gel could 

be separated into two processes, short term and long term. The short-term process was dominated by irreversible 

gelation within the amylose matrix, and the long-term one was linked to a reversible crystallization involving 

amylopectin. The negative correlations between AHj and firmness and stickiness measurements in the current 

work supports their observations. Increased formadon of a retrograded gel (AH^) did not mean increased firmness 

and stickiness, suggesting more than one development process. 
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CONCLUSION 

Amylose and amylopectin both are important to the thermal properties and firmness of starch gels; 

however, the various responses of the samples to DSC analyses suggest that structural differences beyond those 

of amylose and amylopectin also influence these characteristics. The data should be verified by studing the 

mutant effect in other varieties and under different growing conditions. Other work has shown an environmental 

effect on DSC properties of starches grown in two environments (White et al 1991). The TQ were higher and R 

were lower in starches grown in a tropical rather than temperate environment, however, there was a cultivar by 

location interaction. These observations should be considered when evaluating the few samples in our work that 

were grown near Ames, lA rather than in Puerto Rico. But, for the most part, the starches grown near Ames 

were ae single and double mutants that can be compared within one environment. Also, averaged over all 

samples, the double mutants had higher TQ and AH and lower R values than did the single mutants. To 

understand these relationships, future work will involve studying the effect of single and double mutants of 

Oh43 on the structures of starch components. In some cases, the fine structures of amylose and amylopectin 

will be determined to relate the physical properties to the chemical structures. 
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Table I. Differential scanning calorimetry properties of starches® 

Gelatinization Re&igerated-storage rétrogradation 

Starch rc pme Tq r r%S 
(°Q m (caVg) (°Q (°Q (caVg) (AH/AHg) 

Oh43 67.2 8.8 2.9 0.67 42.6 16.9 1.5 49.5 

Single mutants 
68.7 31.3 3.7 0.24 ...i — — — 

btl 63.4 14.9 2.5 0.33 42.7 15.4 1.2 46.8 
bt2 66.8 10.6 2.9 0.55 42.7 16.6 1.3 45.1 
dul 67.2 9.1 2.1 0.46 42.9 17.7 1.5 73.5 
fl2 66.2 9.1 2.9 0.64 44.2 15.1 1.4 49.7 
h 65.6 9.4 2.7 0.57 44.1 15.8 1.4 52.7 
sh2 64.3 8.5 2.4 0.57 42.1 16.5 1.1 46.7 
sul 64.6 7.1 2.1 0.59 43.4 14.1 0.9 45.1 
wx^ 68.6 9.0 3.6 0.80 39.9 21.2 1.9 52.8 

Double mutants 
ae bl2^ 67.1 10.3 2.9 0.57 44.4 14.0 1.3 44.2 

aeh^ 69.6 9.5 2.7 0.58 40.7 20.7 1.4 49.4 

ae sh2^ 68.2 9.7 2.9 0.60 42.2 17.5 1.3 44.6 

aesul^ 65.4 10.7 2.6 0.49 43.3 15.5 1.3 47.7 

ae 70.1 9.2 2.8 0.61 43.7 14.9 1.5 51.7 

btl dul^ 67.3 8.5 2.8 0.66 44.0 14.6 1.3 47.1 

btl sul^ 67.8 9.4 3.0 0.63 43.4 15.7 1.3 44.4 

btl 68.2 10.3 3.1 0.60 41.6 19.3 1.6 51.1 

bt2 dul 66.9 9.5 2.8 0.59 44.2 14.9 1.4 50.0 
bt2 67.8 9.8 2.9 0.59 42.6 17.1 1.4 49.3 

bt2 69.4 9.4 3.0 0.64 42.9 16.5 1.5 50.9 

fl2 ae 67.1 10.9 3.2 0.59 42.6 18.1 1.3 42.1 
fl2 btl 68.1 7.0 3.0 0.87 39.6 18.3 1.5 49.7 
fl2 bt2 68.1 7.7 3.3 0.84 40.7 20.8 1.5 46.5 
fl2dul 67.8 6.9 3.3 0.94 41.8 18.2 1.5 45.3 
fl2h 68.3 6.9 3.1 0.89 42.3 18.2 1.4 46.0 
fl2 sul 67.1 7.8 3.2 0.81 41.3 19.4 1.5 48.2 
fl2 wx 67.4 8.1 3.1 0.77 41.4 19.0 1.6 53.9 

h btl 68.1 5.8 3.2 1.09 41.3 16.9 1.4 45.4 
hbt2 68.5 8.7 3.0 0.69 38.2 19.9 1.6 51.7 
h dul 67.2 7.8 2.9 0.74 41.1 18.6 1.6 53.6 
hfI2 67.7 7.9 3.2 0.80 41.4 19.4 1.5 47.0 
h sh2 68.4 6.7 3.1 0.93 42.0 18.2 1.4 45.6 
h sul 67.5 7.5 2.8 0.75 42.5 17.8 1.4 50.3 
h wx 69.7 4.9 3.6 1.45 42.2 17.0 1.5 42.7 
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s/i2 btl 67.7 9.0 2.8 0.63 41.5 19.1 1.6 58.1 
sh2 dul 70.3 5.1 3.3 1.31 40.3 18.7 1.6 48.3 
sh2fl2 69.3 7.1 3.0 0.85 41.5 18.5 1.4 47.0 
sh2 h 65.0 10.1 3.0 0.58 42.4 18.6 1.4 48.0 
sh2 sul 68.9 9.0 3.0 0.66 40.5 20.5 1.6 52.5 
sh2 68.1 10.9 3.0 0.55 42.0 18.0 1.5 51.0 

sul bt2 67.0 8.6 3.1 0.71 43.4 16.9 1.6 51.1 
sul dul 68.2 8.1 2.5 0.62 39.7 16.6 1.4 57.9 
sul h 68.7 6.6 2.7 0.82 42.2 20.2 1.4 53.9 
sul sh2 67.5 7.5 3.0 0.79 41.3 18.3 1.4 47.0 
sul wx 67.4 7.9 3.1 0.78 42.6 17.1 1.4 47.0 

wxdul 70.9 7.5 3.3 0.87 42.4 18.9 1.5 44.9 
wx sul 68.3 5.4 3.3 1.23 42.2 17.3 1.5 45.3 

LSDo.O.S 0.70 0.72 0.2 1.06 1.78 0.1 4.58 

^ Values are the average of three determinations each from two separate extractions, ae = Amylose extender, bt = 

brittle, du = dull,/? = floury, h = homy, sh = shrunken, su = sugary, and wx = waxy. 

^ Onset temperature. 

^ Gelatinization range calculated as 2 (Tp-Tg) as described by Krueger et al (1987a). 

^ Enthalpy of gelatinization. 

® Peak height index = AH/(Tp-TQ) as described by Krueger et al (1987a). 

f Enthalpy of rétrogradation. 

S Ratio of enthalpy of rétrogradation to enthalpy of gelatinization. 

'^Mutants grown in Ames, lA. Other mutants were grown in Puerto Rico. 

'Data are omitted because its broad thermogram extended beyond 1(X)°C. 
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Table II. Summaiy of significant differences among differential scanning calorimetry properties of single and 

double mutant starches^ 

Gelatinization Rétrogradation 

Starch Group Comparison Tob RC To R r%f 

Oh43 vs mutants nsS ns ns ns ns ns *h 

Oh43 vs single mutants ns ns ns ns ns ns ns 

Oh43 vs double mutants ns ns * ns ns ns ns 

Single vs double mutants ** ** ** ** ** ns ns 

ae ' vs other mutants ns ** ns ns ns ns ns 

btl vs other mutants ** ** ns ** ns ns ns 

bt2 vs other mutants ns ** ns ns ns ns ns 

dul vs other mutants ** ** ns ns ns ns ** 

fl2 vs other mutants ns ** ** ** ns ns ** 

h vs other mutants * ** ns ** * ns ns 

sh2 vs other mutants ** ns ns ** * ns ns 

sul vs other mutants ns ** * ns ns ns ns 

wx vs other mutants ** * ** ns ns ns ns 

^ae = Amylose extender, bt = brittle, du = dull,/? = floury, h = homy, sh = shrunken, su = sugary, and wx = 

waxy. 

^ Onset temperature. 

^ Gelatinization range calculated as 2 (Tp-Tg) as described by Krueger et al (1987a). 

Enthalpy of gelatinization. 

® Enthalpy of rétrogradation. 

f Ratio of enthalpy of rétrogradation to enthalpy of gelatinization. 

8 Not significant at P < 0.05. 

h * and ** = Significant at P < 0.05 and P < 0.01 levels of probability, respectively. 

' All single and double mutants containing this recessive mutant gene. 
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Table m. Firmness and stickiness of starch gels 

Mutant^ Firmness Stickiness 

Oh43 2.6 0.8 

Single mutants 

ce 2.4 1.1 

btl 2.1 0.6 

bt2 2.3 0.9 

did 0.8 0.4 

fl2 2.6 0.8 

h 2.3 0.7 

sh2 3.3 0.8 

sul^ - -

wx^ - -

Double mutants 

aebt2 3.0 1.0 

aeh 2.3 0.8 

aesH2 3.3 1.2 

aesul 2.4 0.8 

ae wxf^ - -

btl dul 2.1 0.8 

btl sul 2.9 0.8 

btl wyp - -

bt2 dul 2.1 0.6 

bt2 sh2^ - -

bt2 M/jf - -

fl2 ae 2.7 0.7 

fl2 btl 1.8 0.4 

fl2 bt2 1.6 0.6 

fl2dul 2.4 0.5 

fl2h 1.4 0.5 

fl2sul 1.6 0.6 

fl2 wx9 — __ 
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hbtl 2.0 0.7 

h bt2 1.4 0.7 

hdul 1.4 0.5 

hfI2 1.3 0.5 

h sh2 2.0 0.5 

hsul^ - -

h WAf - -

sh2 btl^ - -

sh2 dul^ - -

sh2fl2 1.3 0.5 

sh2 h 1.8 0.5 

sh2 sitl 0.9 0.4 

sh2 wAf - -

sul bt2 1.6 0.6 

sul dul 2.4 0.7 

sul h 1.5 0.4 

sul sh2 2.1 0.5 

sul WAf - -

wx dul^ — — 

wx — _ 

^ae = Amylose extender, bt = brittle, du = dull,/? = floury, h = homy, sh = shrunken, su = sugary, and wx 

= waxy. 

^ Gram-force recorded by the Voland-Stevens instrument. Values are the average of two determinations 

from two separate extractions. 

^ Gel too weak to support the probe. 

Insufficient sample. 
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FIRMNESS 

STICKINESS 

PENETRATION DISTANCE, mm 

Figure 1. Load penetration curve of 6% (w/w) commercial com starch gel measured by the Voland-Stevens 

texture analyzer. The gel was aged for 4 hr at 25°C before measurement. 
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Figure 2. Differential scanning calorimetry thermograms of selected single-mutant starches within the Oh43 

inbred line. 
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Figure 3. Differential scanning calorimetry thermograms of selected double-mutant starches within the Oh43 

inbred line. 
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ABSTRACT 

The characteristics of starches from 17 endosperm mutant genotypes in a common Oh43 inbred 

background were examined by using gel permeation chromatography (GPC), iodine affinity (lA), and scanning 

electron microscopy (SEM). The chain length distributions of amylopectins were determined by using an 

enzymatic-chromatographic method. Each genotype exhibited distinctive GPC elution patterns of its native and 

isoamylase-debranched starches and distinctive morphology as noted by SEM. The amylose-extender {ae), dull-

l(dul), and sugary-l(jw7) genes were associated with increased amounts of amylose and intermediate fraction 

compared with normal starch. The waxy (w%) gene was epistatic to other genes relative to the accumulation of 

amylopectin, which was consistent with work done elsewhere. The discrepancy in amylose percentage 

determined by using GPC and lA in some genotypes may have resulted from the presence of a large amount of 

intermediate materials in those genotypes, which could not always be distinguished from amylose by the lA 

method. For example, in ae starch, most of the intermediate materials were measured as amylose by the lA 

procedure, whereas in dul, ae btl and ae dul starches, most of the intermediate materials were excluded from LA 

measurements. The intermediate fractions from each genotype in the GPC elution profiles also differed from 

each other, suggesting differences in molecular weight and/or branching. The proportions of long B chains and 

the average chain length of amylopectins were increased when the ae gene was present. In contrast, the dul gene 

decreased the proportions of the long B chains of amylopectins. The mutants containing the ae gene showed 

low degrees of branching in amylopectin; mutants containing the dul and/or sul genes had high degrees of 

branching. Genetic background played a major role in determining the fine structure of starch components. The 

effects of interactions between recessive mutant genes on the structures and morphology of different starch 

genotypes were evident. 
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INTRODUCTION 

Normal maize {Zea mays L.) starch is composed primarily of essentially linear (amylose) and branched 

(amylopectin) components. The amylose content in normal maize starch ranges from 25 to 30% but can vary 

among cultivars and especially with the presence of mutant genes. 

Many recessive mutant genes of maize have been identified that alter the quality and quantity of starch 

in the endosperm. The amylose-extender (ae) genotype produces high apparent amylose content from 50 to 80% 

(Banks and Greenwood 1975). In contrast, the waxy (wj:) gene is epistatic to all other known recessive genes 

for blocking the accumulation of amylose (Ikawa et al 1981, Yeh et al 1981, Inouchi et al 1983, 1987,1991, 

Boyer and Liu 1985). The brittle-1 (btl) mutant increased sugar content at the expense of starch accumulation 

(Creech 1965) and the shrunken-2 {sh2) genotype reduced the starch content to about 30% of the normal amount 

and dramatically increased the sucrose content (Holder et al 1974). The sugary (su) mutant synthesizes and 

accumulates a highly branched polysaccharide, phytoglycogen, to 25% or more of the kernel dry weight 

(Shannon and Garwood 1984). In other work, Yeh et al (1981) reported 55% amylose in the dull {du) starch 

from a sweet com background. 

Moreover, additional variations can be generated when several recessive genes are combined. Fuwa et al 

(1987) found the fine structure of amylopectins to be affected by the recessive gene (ae or du) coupled with the 

wx gene. Holder et al (1974) reported that the presence of sh2 in multiple recessive genotypes inhibited the 

effect of the ae gene at increasing amylose content. 

Elucidation of the fine structure of amylopectin is the subject of many current investigations, 

involving measurements such as average chain length, the A:B chain ratio, and the chain-length of the exterior 

and interior chains. Fuwa et al (1987) showed that, although the wx gene was epistatic to others for 

amylopectin production, the fine structure of the starches varied with the presence of other recessive genes. 

Inouchi et al (1983) proposed that the fine structure of amylopectin was under genetic control. For example, the 

ae wx starch had increased long B chains and decreased short B chains, and the du w.v starch had decreased long B 

chains and increased short B chains compared with starch of the wx genotype. 
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A potentiometric titration method measuring iodine affinity (lA) has long been employed to determine 

the amylose content in the endosperm starch. The estimated amylose is termed "apparent amylose" because the 

occurrence of short chain-length amylose underestimates the amylose content and amylopectin with long 

external chains overestimates the amylose content (Shannon and Garwood 1984). More recently, gel permeation 

chromatography (GPC) has been employed to elucidate the profiles of starch components. The elution profile of 

native starch disclosed that there was no sharp separation between amylopectin and amylose (Yeh et al 1981, 

Boyer and Liu 1985). An intermediate material, consisting of a branched molecule with a lower molecular 

weight than amylopectin, was present and eluted between amylopectin and amylose fractions. Whistler and 

Doane (1961) obtained intermediate materials ranging from 4.5% of the total starch amount for normal 

commercial com starch to 6.6-8.7% for high-amylose com starches. They demonstrated that the properties of 

the intermediate fractions from different starch types were similar to each other and were between those of 

amylose and amylopectin. The presence of intermediate materials in amounts greater than just a few percentage 

points usually is associated with the presence of the ae gene (Whistler and Doane 1961, Ikawa et al 1978,1981, 

Yeh et al 1981, Inouchi et al 1983, Baba and Arai 1984). The intermediate materials of amylomaize (50% 

apparent amylose) were characterized as having 4 or 5 branches with an average chain length (CL) of 

approximately 50 glucose units, which were linked to a main linear chain containing 100 to 150 glucose units 

(Baba and Arai 1984). 

The structure of starch should be considered at both molecular and granular levels (Banks et al 1973). It 

is the physical and mechanical properties of granular starch that determine many industrial applications. Many 

researchers have studied elucidating the morphology of various starches by using light microscopy (LM) 

(Alsberg 1938, Badenhuizen 1965). Because starch granules are translucent crystals, they often give images that 

are hard to define with LM. The greatest error comes from the diffraction effect of light, which may make the 

interpretation of the intemal and surface structures of starch granules difficult. By using scanning electron 

microscopy (SEM), only the surface structure of the starch granule is revealed. Hall and Sayre (1969,1970, 

1971) studied the shapes and surface structures of various starches by using SEM, demonstrating the advantages 

of SEM in determining the shape and detailed surface characteristics of starch granules. 
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Although much information is now known about the effects of some recessive mutant genes of maize 

on starch properties, few studies have done a comprehensive evaluation of the visual and structural properties of 

the starch granules from many mutant genotypes in a common maize background. The objectives of this study 

were to characterize the structure and morphology of starches from 17 maize endosperm mutant genotypes in a 

common Oh43 inbred background to help in understanding the influences of recessive mutant genes on the 

maize starches. 
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MATERIALS AND METHODS 

Materials 

Mature kernels of Oh43 inbred (normal) and its single and double mutants (Table I) were harvested from 

a summer nursery near Ames, Iowa, in 1991. Development of the genotypes, and sampling and storing of the 

kernels have been previously described (Wang et al 1992). 

Isolation and Preparation of Starch Samples 

Starches were isolated according to a small-scale wet-milling procedure described by White et al (1990). 

Approximately 5 g of kernels from each genotype was used for starch extraction. 

After extraction from the kernels, starch was preliminarily defatted by refluxing in 85% methanol for 

24 hr and dried at 45°C overnight. Defatted starch granules were then dispersed in 90:10 (v/v) dimethyl sulfoxide 

(DMSO)/deionized water and stirred in a boiling water bath for 1 hr and at room temperature for another 24 hr to 

ensure complete dispersion. 

Gel Permeation Chromatography (GPC) 

GPC of native starch. An amount of 75 mg of starch was precipitated from 1.5 mL DMSO-

dispersed starch solution (50 mg starch/mL) with 10 volumes of absolute ethanol and was collected by 

centrifugation at 8,700 X g for 20 min at 4°C. Precipitated starch was redissolved in 25 mL boiling water, 

stirred in a boiling water bath for 30 min, and filtered through Whatman No. 1 filter paper for further 

purification. 

Five milliliters of starch solution (containing 15 mg starch and 0.8 mg glucose marker) was loaded 

onto a Pharmacia column (2.6 i.d. x 79 cm) packed with Sepharose CL-2B gel (Pharmacia LKB Biotech.. 

Uppsala, Sweden). The procedure followed that of Jane and Chen (1992) except that the column was eluted with 

degassed 20-mM NaCl solution adjusted to pH 11 with 1 N NaOH in the ascending mode with a flow rate of 30 

mL/hr. Fractions of 4.9 mL effluent were collected every 9.5 min and subjected to total carbohydrate and 
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amylose content analyses by using the anthione-sulfuric acid method (Wright and Gann 1966) and the iodine 

staining tests (Juliano 1971), respectively. The minimum value from iodine staining was used to identify the 

end of the eluted amylopectin fraction; thus, the starch profile could be identified as to amylopectin and amylose 

fractions. The amylose percentage was calculated by dividing the amount of starch under the amylose peak by 

the total starch in all fractions according to Jane and Chen (1992). Starch from each genotype was fractionated 

twice and the values from the data were averaged. Replicates were very similar to one another. 

GPC of isoamvlase-debranched starch. The starch was prepared, debranched, and fractionated on 

a Bio-Gel P-6 column (Bio-Rad Laboratories, Richmond, CA) by following the method of Jane and Chen (1992) 

except that native starch was used instead of amylopectin. Crystalline Pseudomonas isoamylase was used 

(Hayashibara Shoji, Inc., Olayama, Japan). 

Fractions (2.3 mL) from the elution were collected and assayed for total carbohydrate by using the 

anthrone-sulfuric acid method (Wright and Gann 1966). The eluted materials were separated into three fractions 

with divisions being made at minimum points according to the total carbohydrate values. Fig. 1A shows the 

elution pattern and fractions of normal starch. The waxy starches, containing 100% amylopectin, consisted only 

of Fr. II and Fr. III. Three portions (2.3 mL each) of effluent at the peaks of Fr. II and Fr. Ill were assayed for 

total carbohydrate by using the phenol-sulfuric acid method (Dubois et al 1956) and for reducing value by using 

a modified Park-Johnson method (Hizukuri et ai 1981, Jane and Chen 1992). The average chain length (CL) of 

debranched amylopectin was calculated by dividing total carbohydrate by its reducing value. 

Iodine Affinity (lA) 

Iodine affinities (lA) for the defatted starches, expressed as mg of iodine bound to 100 mg of starch, 

were determined in duplicate with amperometric titration (Schoch 1964) at 30°C and the results were averaged. 

Amylose percentages were extrapolated from the inflection points and calculated by assuming that pure maize 

amylose has an iodine affinity of 19.0%. 
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Scanning Electron Microscopy (SEM) 

Each starch sample was stirred carefully to obtain a homogeneous mixture from which a small amount 

of sample was removed for SEM. Starch granules were sprinkled onto double-stick tape attached to specimen 

stubs and coated with gold-palladium. The mounted specimens were examined with a JEOL JSM-35 scanning 

electron microscope (JEOL Ltd., Tokyo, Japan) at an accelerating voltage of 10 kV. Representative 

micrographs were taken on each genotype at a magnification of X 1,000. The starch granule diameter was 

estimated by averaging the largest dimension of 15 random starch granules from duplicate micrographs for each 

starch type. 

Statistical Anaylses 

Duplicate results were obtained and analyzed for correlations among percentage compositions and chain 

length distribution of polysaccharides by using the SAS program (SAS Institute 1990). 
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RESULTS AND DISCUSSION 

Characteristics of Native Starches of 17 Genotypes from GPC 

The elution profiles of native starches presented in Figs. IB, 2 and 3 show the total carbohydrate 

content and the blue value response derived from the iodine staining test. In the elution profiles, the first peak 

(Fr. I) corresponds to amylopectin, which, because of its large molecular weight, was excluded from the gel and 

appeared at the void volume. The second peak (Fr. II) is considered to be amylose, and the peak at fraction 

number 88 is glucose, added to mark the end of the elution. Intermediate material eluted between Fr. I and Fr. II 

was detected either as a small hump or, more likely, by an elevated baseline between Fr. I and Fr. II that did not 

allow clear separation between the two fractions. 

The normal starch exhibited typical amylopectin and amylose peaks (Fig. IB). There was no baseline 

separation between amylopectin and amylose, which also was observed by Yeh et al (1981) and Boyer and Liu 

(1985), but the amount of intermediate materials was very little. The ae starch (Fig. 2A) had a highly elevated 

baseline between Fr. I and II, indicating a large proportion of intermediate materials, and the blue value response 

was relatively high in the amylose region. The elution profiles of btl, bt2 and h starches (Figs. 2B, 2C and 2E) 

were similar to that of normal starch. The dul starch (Fig. 2D) contained an amount of intermediate materials 

similar to that of ae starch; however, the blue value response in the amylose region was less than that of ae 

starch. A large amount of intermediate materials in dul starch in a dent com inbred (W64A) also was observed 

by Boyer and Liu (1985), but Yeh et al (1981) did not observe this in a sweet com background (Ia5125). It is 

likely that the genetic background plays a role in determining the fine stmcture of starch components. The 

chromatogram of the sh2 starch (Fig. 2F) was similar to that of normal starch at the amylose portion but had a 

higher blue value response at the amylopectin portion than that of normal starch. Although sul starch (Fig. 

2G) had a lesser amylose content than did dul starch as measured by GPC of the native starch, its blue value 

response was greater than that of the dul starch, indicating the amylose portion of sul starch bound more iodine 

than did the amylose portion of dul starch. There was no amylose peak observed in the profile of w.ï starch 

(Fig. 2H), indicating the presence only of amylopectin. 
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An amylopectin peak and a broad, two-component polysaccharide response in the region normally 

associated with amylose were noted in the profile of ae btl starch (Fig. 3A). The amylose percentage of ae btl 

starch (54.9% when calculated according to the GPC data) was overestimated because it included both 

intermediate and amylose components as noted in the Materials and Methods section. Similarly, the ae dul and 

dul sul starches (Figs. 3B and 3C) contained a large amount of intermediate materials as evidenced by the 

elevated baseline between Fr. I and Fr. II. High proportions of intermediate fractions in the elution profiles of 

ae du and du su2 also were reported by Yeh et al (1981). The blue value response of ae dul in the region of 

amylose was the greatest among all the starches, indicating the high amylose content of ae dul starch. The 

elution profiles of h sh2 and sh2 btl starches (Figs. 3D and 3F) were similar to that of normal starch for 

polysaccharide response, but the blue value response of sh2 btl starch was higher in the amylopectin region and 

lower in the amylose region than was that of normal starch. A small response of blue value was noted for 

amylose in the profile of h wx starch (Fig. 3E), suggesting the presence of low molecular-weight (MW) 

molecules in hwx starch. Starches from the double-mutant genotypes of sh2 wx and wx dul (Figs. 3G and 3H) 

exhibited elution profiles similar to that of the wx starch. 

The amylose percentages of starch from the 17 genotypes, determined from Fr. II of GPC profiles of 

native starches, are summarized in Table I. The normal starch contained 29.9% amylose, which is in the range 

(25% to 30%) usually found in normal maize starch. The amylose contents of btl, brittle-2 {bt2), homy {h), 

and sh2 starches were within the range of that of normal starch. The single- and double-mutant genotypes 

containing ae, dul, and sul (except when present with the wx gene) exhibited amylose percentages higher than 

in normal maize, which agrees with previous reports (Yeh et al 1981, Inouchi et al 1983,1987, Boyer and Liu 

1985). The ae starch had the highest amylose percentage, 61.3%, among single mutants. The dul and sul 

genotypes produced starch with 45.7% and 40.5% amylose, respectively, which were less than those reported by 

Yeh et al (1981). Boyer and Liu (1985) reported that dent corns produced mutants with more amylose content 

than did sweet corns. Their findings were in contrast to results shown in the present study in which amylose 

contents of dul and sul starches from a dent background were less than those from a sweet com background 

studied by Yeh et al (1981). Results from these two research groups and from our work suggest that the genetic 
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background produces specific variations in the starch properties of maize mutants. 

The waxy (wx) genotype and the double mutants containing the wx gene {h wx, sh2 wx, and wx dul) 

produced starches consisting of 100% amylopectin, which is in agreement with previous reports that the wx 

gene blocked the accumulation of amylose (Ikawa et al 1981, Yeh et al 1981, Inouchi et al 1983,1987,1991, 

Boyer and Liu 1985). When the ae gene was present with another gene, the amylose percentages of the 

combined mutants increased considerably. The double-mutant combinations of ae btl and ae dul resulted in 

higher amylose percentages (54.9% and 76.2%, respectively) than did normal, btl, or dul starches, which is 

consistent with other results (Boyer and Liu 1985, Inouchi et al 1991). An additive effect was noted when the ae 

and dul genes were combined, which resulted in ae dul starch having the greatest amylose content among all 

starches in this study. This effect, however, was not noted by Yeh et al (1981). The dul sul starch also had a 

large amylose content, 46.2%, which was more than that of the dul or sul starches. The amylose contents of 

the h sh2 and sh2 btl starches were similar to those of their respective single mutants and to normal starch. 

Amylose Percentage Determined by Iodine Affinity (lA) 

The amylose percentages of the 17 starch genotypes determined by using iodine potentiometric titration 

are presented in Table I. In general, the amylose percentage calculated from lA was similar to that measured by 

using column chromatography for all genotypes except for those of dul, ae btl, ae dul, and dul sul. The 

amylose content derived from the lA method was significantly lower than that calculated from the GPC profile 

of the native starches of dul, ae btl, ae dul, and dul sul. These starches, at the same time, showed a great 

amount of intermediate materials by means of GPC, suggesting that the lA method did not measure the 

intermediate components of the dul,ae btl, ae dul,iaid dul sul starches. The ae starch also contained a 

significant amount of intermediate component, but there was little difference in amylose percentage determined 

by using the two methods. It is suspected that the branched chains of intermediate materials in ae starch were 

longer than those of dul, ae btl, ae dul, and dul sul starches; therefore, they were detected as amylose by the IA 

method. The results suggest that the intermediate materials in starch from each genotype may be different and 

should not be grouped as similar materials, which conflicts with the earlier belief that intermediate materials 
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from different starch types were similar (Whistler and Doane 1961). Furthermore, it is hard to predict the 

amount of intermediate materials simply by using the lA or GPC methods, perhaps because of the diverse nature 

and, thus, behavior of intermediate materials among the different genotypes. Several research groups 

demonstrated that the presence of intermediate materials caused a discrepancy in determining amylose content by 

different methods (Kramer et al 1958, Seckinger and Wolf 1966, Holder et al 1974, Ikawa et al 1978, Yeh et al 

1981). 

GPC Properties of Debranched Starches 

The chromatograms of isoamylase-debranched starch from the 17 maize genotypes are presented in 

Figs. 1 A, 4 and 5. The eluted profile was divided into three fractions, and the CL from material collected at the 

apices of peaks from fraction II (Fr. II) and fraction III (Fr. in) were determined (see Fig. 1A and Table I). 

Fraction I (Fr. I) was composed mostly of amylose, Fr. II included long B chains of amylopectin, and Fr. Ill 

contained A and short B chains of amylopecitn (Hizukuri 1986). The ratio of Fr. Ill to Fr. II, as shown, may be 

used as an index of the extent of branching of amylopectin; the higher the ratio, the higher the degree of 

branching (Biliaderis et al 1981). 

The elution profiles of btl,bt2, /i, sfi2, ae btl, h sh2 and sh2 btl starches (Figs. 4B ,4C .4E, 4F, 5A. 

5D and 5F) are similar to that of normal starch (Fig. 1 A) which exhibited three fractions with clear division. 

The ae and ae dul (Figs. 4A and 5B) had similar elution profiles in which Fr. II is hard to separate from Fr. I. 

The starches of dul, sul and dul sul (Figs. 4D, 4G and 5C) did not show clear Fr. II in the chromatograms. 

All of the waxy starches- wx, h wx, sh2 wx and wx dul (Figs. 4H, 5E, 5G and 5H)- had similar elution profiles 

where no Fr. I was present. 

Among single mutants, the ratios of Fr. Ill to Fr. II were similar for normal, btl. A, and wx starches 

(ratios ranging from 2.6 to 3.0) and close to those of previous reports (Inouchi et al 1983, 1987, Hizukuri 1985, 

Ninomya et al 1989). The ratios for ae and bt2 starches were lower than those for normal starch at 1.0 and 2.4, 

respectively, whereas dul, sh2, and sul starches had ratios higher than 3.8. The dul starch had the highest ratio 

(5.6) among all starches, which was higher than those in previous reports (Inouchi et al 1983,1987). Among 
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single mutants, the peak CL for Fr. II ranged from 39 for w;c to 51 for dul, and the peak CL for Fr. Ill ranged 

from 13 to 15 except for the ae genotype, which had a peak CL of 20 glucose units. These results are 

consistent with those of Inouchi et al (1987) in that, compared with the amylopectin from normal or wx starch, 

ae starch had longer branches and more long B chains (Fr. II) and dul starch had more A and short B chains of 

amylopectin (Fr. IE). In addition, the longest peak CL for Fr. n (51 glucose units) among all starches was 

found in dul starch, a feature which is usually associated with ae starch. 

The ratios of Fr. Ill to Fr. II for double mutants ranged from 1.2 for ae dul starch to 4.0 for dul sul 

starch. When the ae gene was combined with the btl or dul gene, the double-mutant combinations (ae btl and 

ae dul) showed ratios and peak CL similar to those of ae starch, suggesting that the ae gene is more important 

than are the btl and dul genes in determining the fine structure of amylopectin of ae btl and ae dul starches. 

The starches of dul sul and sh2 btl possessed longer peak CL at Fr. II than did the normal starch. The results 

of the ratios of Fr. Ill to Fr. II for btl (3.0), h (2.8), sh2 (3.8), h sh2 (2.7) and sh2 btl (3.7) suggest that the h 

gene is more important than the sh2 gene and that the sh2 gene is more important than is the btl gene in 

determining the Fr. III/Fr. 11 ratios of h sh2 and sh2 btl starches. However, btl, h, and sh2 starches had similar 

peak CL at both Fr. II and Fr. III. 

The starches with high amylose content (ae, ae btl and ae dul) had low ratios of Fr. Ill to Fr. H, 

indicating low degrees of branching. They also had long peak CL at both Fr. II and Fr. III. After being 

debranched by isoamylase, the starch genotypes exhibited chromatograms that were different from each other, 

demonstrating that the chromatograms of debranched starches are characteristic of the starch genotype in addition 

to providing fine structure information of amylopectin. 

Estimation of Intermediate Fraction from GPC Profiles 

Recently, South et al (1991) reported that a more accurate amylose content can be obtained from GPC 

data of debranched starches than by using lA or GPC of native starch. The lA procedure gave reliable estimates 

of amylose content only when amylopectin had a normal low iodine-binding capacity. When anomalous types 

of amylopectin with extended external chains were present, false high values for amylose contents were obtained. 
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Similarly, high amylose values were calculated from the elution profile of native starch because the anomalous 

amylopectin (intermediate materials) was included in the amylose fraction. South et al (1991) estimated that the 

low-MW (anomalous) amylopectin could be calculated as the difference between Fr. II of the native starch and 

Fr. I of the debranched starch GPC elution profiles. Accordingly, the intermediate materials corresponding to 

the anomalous amylopectins in the present study were quantified (Table I). 

The ae, dul, sul,ae btl, ae dul, and dul sul starches had large amounts of intermediate materials as 

also qualitatively noted from GPC of the native starches. When starches containing the wx gene were excluded, 

the amounts of intermediate materials were weakly correlated with the peak CL of Fr. II from GPC of 

debranched starches (r = 0.73, P < 0.01). These results support the statement of South et al (1991) that the 

intermediate materials are a type of low-MW amylopectin with extended chains and, through the action of the ae 

gene, can give enhanced lA values for starches. The dul gene, in contrast, increased amylose and intermediate 

materials contents but did not increase iodine-binding capacities, which also is consistent with the observation 

of South et al (1991). The peak CL of Fr. II from GPC of debranched dul starch was longer than that of normal 

starch, which, according to South et al (1991), should cause a marked difference between the lA value and the 

amylose value as measured in Fr. I of debranched starch. The discrepancy in amylose content between the lA 

method and that calculated from Fr. I in GPC of the debranched starch was observed for ae starch, but not for dul 

starch. The ae btl and ae dul starches also showed little difference between the two values. The results indicate 

that other factors besides chain length also may be important in controlling the binding between iodine and 

starch molecules. 

Scanning Electron Micrographs of Starch Granules 

The morphology of native starch granules from the 17 maize genotypes was captured by means of 

scanning electron microscopy (SEM) (Figs. 6-8). All micrographs were taken at a magnification of X 1.000. 

Table II summarizes the size distribution of starch granules from different genotypes. 

Normal starch granules had typical angular and spherical shapes (Fig. 6A), and the diameters of 

granules varied from 6 to 17 (im, with an average of 11.6 |am (Table II). Starch granules in the floury 
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endosperm are more rounded, whereas those in the homy endosperm are more angular (Watson 1967). The ae 

starch granules were generally spherical with some elongated shapes and had smooth outlines in contrast to the 

facets of normal starch, which suggests a loose arrangement of granules in the endosperm of the ae genotype 

(Wolf et al 1964) (See Fig. 6B). The appearance of irregular and elongated shaped granules in ae starch is well 

documented (Deatherage et al 1954, Wolf et al 1964, Sandstedt et al 1968, Hall and Sayre 1970, Banks et al 

1974, Boyer et al 1976, Gallant and Bouchet 1986). The average size of ae starch granules, 7.0 (im, was 

smaller than that of normal starch, which is in agreement with previous reports (Wolf et al 1964, Boyer et al 

1976, Cluskey et al 1980). Granules of btl, dul, sh2, and sul starches (Figs. 6C, 6E, 7B and 7C, 

respectively) were generally smaller than those of normal starch (see Table II). The granular size (range and 

average) for bt2 and wx starches (Figs. 6D and 7D, respectively) was similar to that for normal starch. The h 

starch granules were large with a smooth surface (Fig. 7A), and the average size (13.8 |xm) was the largest 

among all genotypes. The small granules of sitl starch (Fig. 7C) were agglomerated with distinct divisions, 

which first was observed by Sandstedt et al (1968). 

The morphology of the starch granules is influenced by the presence of another mutant gene, and 

additional complexity is created by the interactions of the two genes. When the ae gene was combined with the 

btl or dul gene, abnormally shaped granules, characteristic oSae starch, were found (Fig. 7E and F). Many 

researchers have suggested that, as the amylose content increases, the irregularity of starch granule shape 

increases (Wolf et al 1964, Banks et al 1974, Gallant and Bauchet 1986). On the other hand, Boyer et al (1977) 

suggested that high amylose content was not a requirement for abnormal starch granule formation in genotypes 

containing the ae gene and that the abnormal granule was indeed a result of a high ratio of linearity to branching 

in the total starch. No conclusion regarding this relationship can be drawn from the present results. 

One of many examples illustrating the effects between two genes comes from dul sul starch (Fig. 8A). 

The dul sul starch looked similar to sul starch with respect to the aggregations of small granules, but the size 

of the granules (6.9 nm) was between those of dul (7.8 nm) and sul (5.4 nm) starches. In contrast, the average 

size of ae btl was slightly smaller than that of ae and btl starches, suggesting a combined effect on granular 

size. Similarly, sh2 btl starch had an average granular size smaller than that of either sh2 or btl starches. The 
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h gene seemed to have more influence than did the sh2 gene relative to the size of the starch granules when the h 

sh2 starch was examined (Fig. 8B). The wx gene seemed to be more important than dul, sh2, and, perhaps, h 

genes in the h wx, sh2 wx and wx dul genotypes (Figs. 8C, E, and F, respectively) relative to the morphology 

and size of the starch granules. The granular size of the h sh2 starch (11.2 |im) (Fig. 8B) was between that of h 

and sh2 starches. Banks et al (1974) and Cluskey et al (1980) reported an inverse relationship between the size 

of starch granules and the apparent amylose content of amylomaize starches with different amylose contents and 

normal maize starch. Only a weak relationship (r = -0.29, P < 0.01) was found in the present study between the 

apparent amylose content (from lA) and the average granular size of the 13 maize genotypes (excluding waxy 

starches). 
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CONCLUSION 

By using GPC and SEM, the structure and morphology of 17 maize endosperm mutant genotypes of 

Oh43 inbred were elucidated. The starches containing the ae gene showed high amylose content, low degree of 

branching, long branch chain length of amylopectin, and high intermediate materials content, suggesting the 

important role of the ae gene in determining the fine structure of starch. The dul starch had increased amylose 

and intermediate materials contents with the longest peak CL at Fr. II of debranched amylopectin among all 

starches. The sul and dul sul genotypes also produced starches with higher amylose and intermediate materials 

contents than did the normal genotype. The starches of wx, h wx. sh2 wx, and wx dul had similar structures as 

measured by GPC of native and isoamylase-debranched starches although minor differences existed. In general, 

starches from each genotype were different from each other, and the combination of two genes created additional 

variations in structure and shape of starch granules. How these variations affect the starch properties needs 

further investigation. 
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Table I. Percentage compositions of polysaccharides®'' and chain length distribution'' of starches from 17 

mutant genotypes of Oh43 inbred 

GPC, debranched 

GPC, native 

Genotype Fr. Fr. 11^ 
% % 

lAG 

Fr.jf Fr. IIS Fr.IIl'i Fr. Ill Fr. IIS Fr. IIl'i 
% % Fr. II 

CU at peak of Intermediate 

materials) 
% 

normal 70.1 
(0.6) 

29.9 
(0.6) 

27.8 
(1.1) 

26.7 
(0.3) 

19.2 
(0.1) 

54.1 
(0.1) 

2.8 
(0) 

43 
(2) 

15 
(1) 

3.2 

ce 38.7 
(0.1) 

61.3 
(0.1) 

56.4 
(1.1) 

46.0 
(0.6) 

27.2 
(0.2) 

26.8 
(0.4) 

1.0 
(0) 

48 
(1) 

20 
(1) 

15.3 

btl 73.3 
(1.3) 

26.7 
(1.3) 

23.2 
(0.8) 

24.9 
(0.7) 

18.9 
(0.6) 

56.2 
(0.1) 

3.0 
(0.1) 

42 
(3) 

14 
(0) 

1.8 

btl 73.2 
(0.6) 

26.8 
(0.6) 

26.9 
(0) 

24.7 
(0.6) 

22.1 
(0.3) 

53.2 
(0.3) 

2.4 
(0) 

41 
(1) 

15 
(0) 

2.1 

dul 54.3 
(0.1) 

45.7 
(0.1) 

31.4 
(0.4) 

30.5 
(0.2) 

10.6 
(0.4) 

58.9 
(0.3) 

5.6 
(0.2) 

51 
(1) 

14 
(0) 

15.2 

71.3 
(2.5) 

28.7 
(2.5) 

26.4 
(0.8) 

28.1 
(0.1) 

19.2 
(1.0) 

52.7 
(1.1) 

2.8 
(0.2) 

41 
(1) 

15 
(1) 

0.6 

sh2 72.6 
(0.6) 

27.4 
(0.6) 

28.8 
(0) 

30.1 
(0.6) 

14.7 
(0) 

55.2 
(0.6) 

3.8 
(0.1) 

40 
(3) 

13 
(1) 

-2.7 

sul 59.5 
(0.4) 

40.5 
(0.4) 

37.4 
(1.5) 

31.2 
(0.6) 

12.3 
(0.1) 

56.5 
(0.7) 

4.6 
(0.1) 

41 
(4) 

14 
(0) 

9.3 

wx 100.0 
(0) 

0 
(0) 

0 
(0) 

0 
(0) 

27.7 
(0.4) 

72.3 
(0.4) 

2.6 
(0) 

39 
(1) 

15 
(1) 

ae btl 45.1 
(0.1) 

54.9 
(0.1) 

30.5 
(0.1) 

32.4 
(0) 

24.5 
(0.4) 

43.1 
(0.4) 

1.8 
(0) 

49 
(2) 

16 
(1) 

22.5 

aedul 23.8 
(0.1) 

76.2 
(0.1) 

57.8 
(1.4) 

57.3 
(0.1) 

19.8 
(0.1) 

22.9 
(0.1) 

1.2 
(0) 

49 
(0) 

19 
(1) 

18.9 
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72 

dul sul 53.8 46.2 39.9 34.5 13.0 52.5 4.0 47 13 11.7 
(0.4) (0.4) (0.7) (1.3) (0.4) (0.9) (0.1) (1) (0) 

h sh2 70.5 29.5 25.4 26.4 20.0 53.6 2.7 44 14 3.1 
(0.4) (0.4) (0.1) (0.2) (0.2) (0.4) (0) (2) (0) 

h wx 100.0 0 0 0 29.2 70.8 2.4 43 16 0 
(0) (0) (0) (0) (0.1) (0.1) (0) (2) (1) 

sh2 btl 71.7 28.3 27.6 27.7 15.4 56.9 3.7 49 13 0.6 
(0.2) (0.2) (0.4) (0.2) (0) (0.1) (0) (1) (0) 

sh2 wx 100.0 0 0 0 30.6 69.4 2.3 42 13 0 
(0) (0) (0) (0) (0) (0) (0) (2) (1) 

wx dul 100.0 0 0 0 26.3 73.7 2.8 39 15 0 
(0) (0) (0) (0) (0.4) (0.4) (0) (0) (0) 

^The division of each fraction (Fr.) is described in the section on Materials and Methods. 

^Values are the average of two separate determinations. Standard deviations (SD) are listed immediately below. 

(^Amylopectin. 

^Amylose and intermediate materials. 

®AmyIose percentage calculated from iodine affinity (lA). 

^Amylose. 

8Long B chains of amylopectin. 

and short B chains of amylopectin. 

'Average chain length of isoamylase-debranched starch measured at the apex of the peak from each fraction. 

Expressed as number of glucose units. 

JCalculated as the difference between Fr. II of the native starch and Fr. I of the debranched starch GPC elution 

profiles. 
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Table II. Size distribution of starch granules of 17 maize genotypes from Oh43 inbred measured from scanning 

electron micrographs 

Genotype Range (nm) Average ± SD^ (um) 

normal 6-17 11.6 ±4.5 

ce 4-11 7.0 ± 2.1 

btl 4-9 6.1 ± 1.3 

bt2 6-19 10.8 ± 3.4 

dul 4-11 7.8 ± 2.1 

h 8-22 13.8 ± 3.6 

sh2 2-9 6.3 ± 1.9 

sul 2-10 5.4 ± 2.6 

wx 6-14 10.3 ± 2.6 

aebtl 3-10 5.6 ±1.6 

aedul 4-14 7.4 ± 2.3 

dul sul 3-12 6.9 ± 2.6 

h sh2 6-23 11.2 ± 3.8 

h wx 3-20 11.0 ±4.4 

sh2 btl 3-9 5.4 ± 1.6 

sh2 wx 4-16 10.2 ± 3.7 

wxdul 4-19 10.2 ± 3.6 

^Average ± SD of 30 starch granules, 15 each from two micrographs. 
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Figure 1. GPC elution profile of Oh43 starch. A. isoamylase-debranched starch. Fraction (Fr.) I was 

composed of amylose. Fr. II included long B chains of amylopectin. Fr. III contained A and short B 

chains of amylopectin. B. native starch. 
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Figure 2. Elution profile of native starch from single mutant genoytypes on Sepharose CL-2B. A. ae starch, 

B. btl starch, C. bt2 starch, D. dul starch, E. h starch, F. sh2 starch, G. sul starch, H. wx starch. 

BV = blue value response; total CHO = total polysaccharide value. 
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Figure 3. Elution profile of native starch from double mutant genoytypes on Sepharose CL-2B. A. ae btl 

starch, B. ae dul starch, C. dul sul starch, D. h sh2 starch, E. h w.r starch, F. sh2 btl starch, G. 

sh2 wjT starch, H. wx dul starch. See Fig. 2 for abbreviation of symbols. 
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Figure 4. GPC elution profile of isoamylase-debranched starch from single mutant genoytypes on Bio-Gel P-6. 

A. ae starch, B. btl starch, C. bt2 starch, D. dul starch, E. h starch, F. sh2 starch, G. sul starch, 

H. wjc starch. 
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Figure 5. GPC elution profile of isoatnylase-debranched starch from double mutant genoytypes on Bio-Gel P-6. 

A. ae btl starch, B. ae dul starch, C. dul sul starch, D. h sh2 starch, E. h wx starch, F. sh2 btl 

starch, G. sh2 wx starch, H. wx dul starch. 
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Figure 6. SEM of maize starch granules (1,000 X). A. normal starch, B. ae starch, C. btl starch, D. bt2 

starch, E. dul starch. 
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Figure 7. SEM of maize starch granules (1,000 X). A. h starch, B. sh2 starch, C. sul starch, D. wjc 

starch, E. ae btl starch, F. ae dul starch. 
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Figure 8. SEM of maize starch granules (1,000 X). A. did sul starch, B. h sh2 starch, C. h w.x starch, 

D. sh2 btl starch, E. sh2 wx starch, F. wx dul starch. 
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ABSTRACT 

The physicochemical properties of 17 mutant genotypes of the inbred line Oh43 were investigated to 

clarify the relations between structural characteristics and physicochemical properties, and among the properties 

themselves. These physicochemical properties included blue value (B V), maximum absorbance wavelength 

(Xmax). limiting viscosity number ([t|]), swelling power and solubility at 85°C, and percentage transmittance 

(%T) of starch paste at 650 nm. Pasting properties were determined by means of Brabender viscoamylography; 

gel strength, by texture analysis; and thermal properties, by differential scanning calorimetry. Amylose content 

was the most important structural characteristic affecting the physicochemical properties of starch. Amylose 

content was significantly (P < 0.01) correlated with BV (r = 0.96) and Xmax (r = 0.81) and was negatively 

correlated with [t)] (r = -0.83), %T (r = -0.88), swelling power (r = -0.86), and peak viscosity (r = -0.97). Other 

structural characteristics, including intermediate material content, average chain length of debranched 

amylopectin, and ratio of long B chains to short B chains plus A chains of amylopectin, were weakly correlated 

with properties. Some significant conelations were found among properties, including BV , %T, swelling 

power, and peak viscosity. 
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INTRODUCTION 

Starch is the most important reserve carbohydrate in the plant world and is used widely in the food 

processing and other industries. Because of a growing interest in using native starches in the modem food 

industry, there is a demand for new alternative sources of starch. 

Maize is unique among higher plants in its number of genetically accessible mutants and in the degree 

to which it had been characterized. Much work has helped determine starch structures of maize mutants (Boyer 

et al 1976, Dcawa et al 1978,1981, Yeh et al 1981, Inouchi et al 1983,1987, Boyer and Liu 1985, Fuwa et al 

1987), yet little emphasis has focused on the physicochemical properties of these mutants. In general, blue 

value, iodine absorption spectrum, and B-amylolysis limit are used to distinguish amylopectin from amylose in 

mutant starches (Boyer et al 1976, Yeh et al 1981, and Fuwa et al 1987). No other physicochemical properties, 

except limiting viscosity number, have been studied to characterize the starches of maize mutants. 

In a previous study (Wang et al in press), 17 maize mutant genotypes of the Oh43 inbred line were 

characterized for their starch fine structures. The objectives of the present study were to examine the 

physicochemical properties of starches from 17 maize genotypes and to clarify the relations between these 

properties and starch structures. 
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MATERIALS AND METHODS 

Materials 

Mature kernels of Oh43 inbred and its single and double mutants (Table I) were harvested from a 

summer nursery near Ames, Iowa, in 1991. Development of the genotypes and sampling and storing of the 

kernels were described previously (Wang et al 1992). 

Starches were isolated by using a wet-milling procedure (Steinke and Johnson 1991). The isolated 

starches were purified by treating with 5 volumes of 0.2 M sodium chloride-toluene (5:1, v/v) at least five 

times, and after each treatment the starch granules were sedimented by centrifugation. The final sediment was 

washed three times with distilled water and dried at 45°C for 24 hr. All the starches used in this study were 

obtained from a single isolation and purification. The amount of starch isolated depended upon the amount of 

available com of each genotype, but ranged from 5 to 100 g. 

Blue value (BV) and Iodine-absorption Spectrum 

The blue value (BV) was determined according to Gilbert and Spragg (1964), and the same sample was 

used to measure the wavelength of maximum absorption (X^ax) from 700 to 500 nm. Two separate 

determinations were done on each starch genotype. 

Limiting Viscosity Number [t|] 

The limiting viscosity number [ti] (mL/g) was determined with an Ostwald viscometer at 22.5°C by 

following the method of Myers and Smith (1964) except that starch was dissolved in 1 N KOH. The flow time 

was 133 sec for 1 N KOH. Three separate measurements were performed for each starch type. 

Swelling Power and Solubility 

Swelling power and solubility were performed at 85°C according to Leach et al (1959), but with these 

modifications. Starch (0.5 g dry-weight basis [dwb] for non-waxy starches and 0.25 g [dwb] for waxy starches) 
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was added to 8 mL distilled water in a 85°C water bath for 30 min and mixed with a stirring bar at moderate 

speed. The swelling power of amylose-extender (ae) and of amylose-extender dulll {ae did) starches was 

measured at 100°C because of their poor swelling at 85°C from a preliminary test. After 30 min of heating, the 

stirring bar was removed and rinsed with distilled water, and additional water was added to make the total water 

weight 10.0 g. The starch paste was centrifuged at 1,500 X g for 20 min, after which 5 mL of supernatant was 

pipetted into a weighing dish and dried at 120°C for 2 hr to determine the soluble content. The remaining 

supernatant was carefully removed by suction and weighed to determine the amount of water absorbed by starch 

granules. Swelling power (%) was calculated with correction for solubles. The results are the average of two 

determinations. 

Both swelling power and solubility techniques have been used to reflect the arrangement of molecules 

within the starch granules. A starch with an extensive and strongly bonded structure, such as high amylose 

starch, exhibits restricted swelling and dispersion. In contrast, waxy starch shows unrestricted swelling. 

Light Transmittance (%T) 

Light transmittance of starch solutions in water (1%, w/w) was determined according to the method of 

Craig et al (1989). The solutions were heated in a boiling water bath and stirred for 30 min. After solutions 

were cooled to room temperature, the percentage transmittance (%T) at 650 nm was measured against a water 

blank by using a Hitachi U-2000 spectrophotometer. The results are the mean of two replicate samples. 

Clarity of a starch paste is one of the important attributes in food systems and is a characteristic of 

starch source. Craig et al (1989) used the percentage transmittance (%T) as a measure of clarity. They proposed 

that when a beam of light passes through the native starch granules, most of the light is reflected back and the 

starch seems white and opaque because the surface of the granule is larger than the wavelength of light. 

Pasting Properties 

Pasting charactersitics of starch suspensions (6% w/w, dwb), with the pH adjusted to 5.5, were 

measured by using the Brabender Viscoamylograph (C.W. Brabender Instruments, Inc., S. Hackensack, NJ) 
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equipped with a 700 cmg sensitivity cartridge operated at a bowl speed of 75 rpm. The temperature was raised 

from 30°C to 95°C at a rate of 1.5°C/min, maintained at 95°C for 30 min, and lowered to 50°C at the same rate 

and held for 30 min. Because of a limited sample size, only one measurement was made on selected starch 

genotypes. 

Gel Strength 

The starch paste prepared with the Brabender Viscoamylograph was used to measure the gel strength 

after storing for 1 and 7 days at 4''C. The paste from each starch genotype was poured into four aluminum 

dishes (27 mm i.d. x 27 mm), which were taped around the rims with aluminum foil to increase the depth of the 

gel to 1 cm above the rims (Takahashi et al 1989). The gel strength of the starch paste was measured at five 

different locations on each gel sample, and two gel samples per starch type were measured after 1 or 7 days of 

storage by using a Voland Texture Analyzer (Texture Technologies, Scarsdale, NY), as previously described 

(Wang et al 1992). 

Thermal Properties 

The thermal properties of starches were determined, according to the method of Wang et al ( 1992 ), by 

using a Perkin-Elmer DSC 7 analyzer equipped with a thermal analysis data station (Ferkin-Elmer Corp., 

Norwalk, CT). Three determinations were done on each starch genotype. 

Statistical Analyses 

Data of physicochemical properties among 17 maize genotypes were analyzed by using the SAS 

program (SAS Institute 1990), and correlations were computed among properties and structural characteristics 

previously characterized (Wang et al in press). Least significant differences were computed at a significance level 

of P < 0.05. 



www.manaraa.com

RESULTS AND DISCUSSION 

General Physicochemical Properties 

The general properties of 17 mutant genotypes of the Oh43 inbred line and their least significant 

differences are summarized in Table I. Normal starch had an amylose content of 26.7%, a blue value (BV) of 

0.371, and a maximum absorbance (%max) at 608 nm. The starches with higher amylose content, i.e., ae 

(46.0%), dill (30.5% ), ae dul (57.3%), and dul sul (34.5%) (Wang et al in press), had significantly greater 

B Vs than did normal starch, with the exception of ae btl starch, which had an amylose content of 32.4% and a 

BV of only 0.306. The k^ax of nonwaxy starches ranged from 598 nm to 617 nm. All waxy starches 

exhibited similar blue values and maximum absorbance values, except h wx starch, which had a significantly (P 

< 0.01) greater BV and Xmax than did the other waxy starches. According to previous results (Wang et al in 

press), starch from h wx contained little amylose, as shown on the elution profile from gel permeation 

chromatography (GPC), which might account for the different BV and X^ax of A wx starch. The relatively 

small BV and A,max of ae btl starch might be caused by the presence of either a great amount of intermediate 

material (22.5%) (Wang et al in press) or structural differences. Except for sh2 starch, the starches with amylose 

contents greater than 30% {ae, dul, sul, ae btl, ae dul, and dul jmI) had limiting viscosity numbers, [r|], of 

less than 200 mL/g, whereas waxy starches had [ti]s greater than 250 mL/g. Again, h wj: starch showed 

different ['nJ from those of other waxy starches. The standard deviation of the [ti] of all starches was less than 2. 

The shear rate was not determined nor were the [t|] values verified to be in the Newtonian region. 

All starches in this study were heated at 85°C to measure swelling power and solubility, with the 

exception of ae and ae dul starches, which were heated at 100°C because of their high amylose content and their 

consequent resistance to gelatinization (Wang et al in press). Even when heated at 100°C, ae and ae dul starches 

exhibited less swelling power (9.7% and 11.9%, respectively) than did normal starch (15.6%) heated at 85°C. 

The ae and the ae dul starches showed significantly (P < 0.01) higher solubility than did normal starch, 

presumably because the amylose, having a small molecular weight, leached out at 100°C. In contrast, the waxy 

starches showed unrestricted swelling and great solubility, likely because of the absence of a network structure 
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from amylose molecules to hold the starch molecules together. The h wx starch had less swelling power and 

solubility than did other waxy starches, results corresponding to those for BV, Xmax- and [rj], and thus 

suggesting the presence of associative bonding in h wx starch. 

Results of the percentage transmittance (%T) measurements differed greatly among samples. The ae 

starch had the smallest %T (0.62), and wx starch the greatest (56.83) among all starches. In general, nonwaxy 

starches had a %T smaller than 10, whereas waxy starches had a %T greater than 30. Craig et al (1989) 

proposed that the disassociation of starch molecules during gelatinization diminished the reflecting ability of a 

starch granule and thus increased the %T of a starch paste. Swinkles (1985) suggested that lipid present 

naturally in the starch granules affects the clarity of starch pastes and that the presence of amylose-lipid 

inclusion compounds makes starch pastes opaque or cloudy. In the present study, among waxy starches, which 

generally contain almost no lipid, there were different %T values, and therefore factors other than starch granular 

integrity and lipid content may also be important. Results from the present study confirm the hypothesis of 

Craig et al (1989), which states that the more starches swell, the greater the %T will be. Waxy starches, which 

exhibited unrestricted swelling, had greater %T than did nonwaxy starches. Moreover, high amylose starches, 

which evidenced restricted swelling and dispersion, also evidenced relatively small %T. 

Pasting Properties 

The pasting properties of starches from some mutant genotypes are listed in Table II. Because of the 

limited sample size, these tests were not performed on all starches. All waxy starches exhibited a high peak 

viscosity, followed by a rapid decrease in viscosity due to the thinning effect from mechanical shearing, and their 

viscosities after cooling to 50°C (set-back viscosities) were less than the viscosity of normal starch. Their 

pasting temperatures also were lower than the temperature of normal starch. The high content of amylose in ae 

starch restricted the swelling of starch granules, and for this reason no viscosity was observed under the 

conditions of the test. The dul starch had a low peak viscosity, which increased slightly during both heating 

and cooling. The pasting pattern of dul starch was attributed to its relatively high amylose content (30.5%) 

(Table I), which reinforced the bonding force within starch granules by the long chains of amylose (Howling 
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1980) and resulted in a high pasting temperature (90.3°C) for dul starch. Normal, h, and h sh2 starches had 

similar pasting patterns. 

Schoch and Maywald (1968) classified four types of starch, according to pasting behavior. Type A 

starches swelled unrestrictedly under cooking and were unstable towards shearing forces while heating. Waxy 

starches in the present study, wx, h wx, sh2 wx, and wx dul, belonged to Type A, which were high-swelling 

starches. The normal, h, and h sh2 starches were Type B starches, which did not swell extensively and were not 

fragile towards mechanical shearing. They showed high set-back viscosities, which indicate a degree of 

reassociation during cooling. Type C starch, a restricted swelling starch, showed no pasting peak but, rather, 

exhibited a constantly high or an increasing viscosity during cooking. The dul starch was a Type C starch, but 

with quite a low viscosity, which increased consistantly during cooking and cooling. Type D starch, containing 

high amylose content, evidenced very limited swelling; therefore, no viscosity was observed at normal 

concentrations. The ae starch in this test was of Type D. 

Gel Strength 

The starch paste resulting from cooking in the Brabender was used to evaluate the gel strength during 

refrigerated storage. Results are listed in Table in. In general, the gel strength increased during storage for 7 

days, but the extent of increase depended upon the starch source. Normal, h, and h sh2 starches showed similar 

values for both firmness and stickiness after 1 and 7 days of storage. The waxy starches did not form gels after 1 

day of storage and only formed very weak gels even after 7 days storage probably because of a lack of amylose to 

form the network structure (Howling 1980, Ring et al 1987, Wang et al 1992). The very limited firmness and 

stickiness of the waxy starches after 7 days indicated occurrence of some reassociation. The ae starch, not being 

fully gelatinized, had very small values for both firmness and stickiness. The dul starch was less firm than was 

normal starch after 1 day of storage, but after 7 days the dul starch gel became significantly firmer (P < 0.01) 

than all other starches, likely because of its high amylose content. Syneresis of water from the starch gel was 

observed for ae and dul starches after 7 days of storage, a fact reflecting their high amylose contents. 
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Thermal Properties 

The thermal properties of ae btl, ae dul, and dul sul starches measured by using differential scanning 

calorimetry (DSC) are listed in Table IV, and the data for other starches were published elsewhere (Wang et al 

1992). Perhaps because of their high intermediate contents, the ae btl, ae dul, and dul sul starches had lower 

onset temperatures (Tq), broader gelatinization ranges (R), lower enthalpies (AHg), and lower peak height indices 

(PHI) for gelatinization than did other starches reported previously (Wang et al 1992). 

Correlation Analyses 

Table V lists starches of 17 mutant genotypes and the correlations among their structural characteristics 

determined previously (Wang et al in press) and their physicochemical properties measured in the present study. 

Amylose content was the most important attribute determining the physicochemical properties of starches. 

Amylose content was positivly correlated with BV (r = 0.96) and A,max (r = 0.81) and was negatively correlated 

with [ti] (r = -0.83), swelling power (r = -0.86), %T (r = -0.88), and peak viscosity on the viscoamylogram (r = 

-0.97), at a significance level of P < 0.01. The intermediate material amount was negatively correlated both 

with [T|] (r = -0.92) and peak viscosity on the viscoamylogram (r = -0.87) (P < 0.01). The average chain length 

(CL) at Fr. II of debranched amylopectin (long B chain of amylopectin) was negatively correlated with peak 

viscosity on the viscoamylogram (r = -0.81, P < 0.01). No other significant correlations with r values greater 

than 0.8 were found among other structural characteristics and physicochemical properties. 

The high correlations between intermediate materials and [t|] and between intermediate materials and 

peak viscosity can be explained if the intermediate materials are indeed small molecules of amylopectin. 

Whistler and Doane (1961) reported that intermediate materials from starches of du su2, ae sul, and ae ae maize 

mutants had similar properties, such as BV, iodine sorption capacity, and rate of rétrogradation. More recently, 

the intermediate materials from amylomaize starch were characterized as having both low-molecular-weight 

branched molecules with four or five branches and a CL of 50 glucose units linked to a main linear chain of 100 

to 150 glucoses (Baba and Arai 1984). Mercier ( 1973) suggested that differences in the chain length distribution 



www.manaraa.com

96 

within a population modified the solubility and other physical properties of a polysaccharide, without 

necessarily altering the CL or the iodine-staining properties, so correlations among these properties would be 

unexpected. 

The correlations among selected physicochemical properties of starches from mutant genotypes of the 

Oh43 inbred line are summarized in Table VI. Swelling power was significantly (P < 0.01) coirelated with both 

%T (r = 0.99) and peak viscosity on the viscoamylogram (r = 0.92) and was negatively correlated with blue 

value (r = -0.88) and Xmax (r = -0.98). Crosbie (1991) reported that wheat starch swelling power was 

significantly (P < 0.01) correlated with starch paste peak viscosity (r = 0.81) and with total sensory score of 

boiled noodles made from the wheat starch (r = 0.88). He suggested that swelling power may be used as an 

alternative to starch paste viscosity for predicting noodle eating quality because of the relatively large sample 

size and long analysis time needed for determining paste peak viscosity with Brabender viscoamylography. The 

present data suggest that %T may be an appropriate alternative. Moreover, %T is easy to determine and needs 

only a small amount of sample. Peak viscosity also significantly correlated with B V (r = -0.97), Xmax (r = 

-0.87), and [t|] (r = 0.93). Firmness and stickiness of gels were significantly correlated (r = 0.98) to each other. 
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CONCLUSION 

Amylose content was the most important structural characteristics affecting the physicochemical 

properties of starch from maize mutant genotypes. Amylose content significantly correlated with BV, A,max. 

swelling power, %T, and peak viscosity. Although amylose content alone was the most important predictor of 

physicochemical properties, however, it did not explain the behavior of all starches. Among waxy starches, the 

h wx starch exhibited physicochemical properties different from those of other waxy starches. These differences 

suggest that the small amount of amylose present in h wx starch may be quite important in determining the 

properties of starch or the fine structure of amylopectin in h wx starch. 
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Table I. Properties of starches from 17 mutant genotypes of the Oh43 inbred line® 

Genotype Amylose 
content*) 

Blue value Î J M] (mL/g) Swelling 
power (%) 
at85°C 

Solubility 
(%) 

at85°C 

%T 
at 650 nm 

normal 26.7 0.371 608 241 15.6 9.4 8.97 

ae 46.0 0.677 610 125 9.7c 23.1C 0.62 

btl 24.9 0.369 615 218 12.0 7.0 3.41 

bt2 24.7 0.323 613 237 
d d d 

dul 30.5 0.434 611 157 11.8 13.6 9.23 

h 28.1 0.388 616 234 14.9 10.0 8.55 

sh2 30.1 0.351 610 238 10.6 3.6 2.37 

sul 31.2 0.397 616 160 12.4 10.4 3.00 

wx 0 0.063 542 268 62.1 25.7 56.83 

aebtl 32.4 0.306 598 139 
d d 

1.72 

aedul 57.3 0.619 604 119 11.9c 37.8C 0.85 

dul sul 34.5 0.477 615 132 9.8 9.1 1.67 

h sh2 26.4 0.394 614 228 15.3 9.8 8.86 

h wx 0 0.109 560 257 40.7 15.1 31.09 

sh2 btl 27.7 0.367 617 228 9.6 3.3 1.95 

sh2 wx 0 0.067 540 267 57.6 23.8 48.79 

wx dul 0 0.061 540 266 56.2 25.4 49.29 

LSDO.05 1.0 0.004 10 2 3.8 5.0 0.30 

^Values are the average of two determinations.except for [t]] which is the average of three determinations, ae = 

amylose extender, bt = brittle, du = dull, h = homy, sh = shrunken, su = sugary, wx = waxy. 

bAmylose percentage calculated from fraction I of gel permeation chromatogram of isoamylase-debranched starch 

(Wang et al in press). 

(^Measured at 100°C. 

^Sample not available for measurement. 
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Table II. Pasting properties of starches from mutant genotypes of the Oh43 inbred line^ 

Viscosity (BU) 
Genotype Pasting 

temperature 
m 

Peak 
viscosity 

(BU) 
at95°C at95°Cfor 

30 min 
at50°C at 50°C for 

30 min 

normal 84.5 359 340 274 550 483 

as 
__b _b _b _b _b b 

dul 90.3 101 70 80 101 100 

h 85.2 300 300 280 535 522 

wx 73.2 680 320 230 318 293 

h sh2 86.0 315 314 290 535 520 

h wx 72.0 620 340 229 352 310 

sh2 wx 72.3 673 330 228 326 294 

wxdul 74.6 622 311 212 312 290 

^Starch concentration 6% (w/w, db). Values are from one determination. 

No value observed. 
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Table III. Gel strength of some starches from mutant genotypes of theOh43 inbred line® 

Firmness (g force) Stickiness (g force) 

Genotype Day 1 Day 7 Day 1 Day? 

normal 5.4 6.1 0.5 1.0 

ae 0.8 1.8 0.2 0.5 

did 3.4 10.4 1.2 2.1 

h 6.3 7.8 0.7 1.8 

wx b 0.8 b 0.4 

h sh2 6.4 8.0 0.8 1.7 

h wx b 0.8 b 0.5 

sh2 wx b 0.9 b 0.4 

wxdul b 0.8 b 0.4 

LSDO.05 2.0 2.0 2.0 2.0 

Values are the average of 10 determinations from two separate samples. 

Gel too weak to support the probe. 
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Table IV. Thermal properties of starches from mutant genotypes of the Oh43 inbred line® 

Gelatinization Refrigerated-storage rétrogradation 

RC ÂÎP To R r%i 
Genotype (qq (QQ (cal/g) PfflC (°Q (°C) (cal/g) (AHr/AHg^ 

aebtl 63.7 13.3 2.0 0.30 38.7 23.3 1.4 70.0 

aedul 65.6 16.0 1.2 0.15 41.2 25.6 0.8 66.7 

dulsul 62.3 11.2 1.7 0.31 38.1 17.5 1.1 64.7 

^Values are the average of three determinations, ae = amylose extender, bt = brittle, du = dull, 

su = sugary. 

''Onset temperature. 

^Range of peak calculated as 2 (Tp - To), as described by Krueger et al (1987). 

^Enthalpy of gelatinization. 

®Peak height index = AH/(Tp - Tq), as described by Krueger et al (1987). 

^Enthalpy of rétrogradation. 

SRatio of enthalpy of rétrogradation to enthalpy of gelatinization. 
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Table V. Correlations between structural characteristics® and physicochemical properties of starches from 17 

mutant genotypes of the Oh43 inbred line 

Amylose 
content^ 

Intermediate 
material content 

Average chain 
length at fraction 
Hofdebranched 

amylopectin 

Average chain 
length at 

fraction IH of 
debanched 

amylopectin 

Fraction HI 
/fraction II of 

detnanched 
amylopectin 

Blue value 0.96**c 0.61** 0.56** 0.47** -0.05 

^max 0.81** 0.25 0.43* 0.05 0.25 

[Til -0.83** -0.92** -0.68** -0.46** 0.02 
Swelling power 

-0.86** -0.47 -0.54** -0.13 -0.25 

Solubility -0.02 0.03 0.62** -0.60** 0.40 

%T -0.88** -0.49 -0.55** -0.18 -0.14 

Peak viscosity -0.97** -0.87** -0.81** -0.45 -0.18 

Firmness of gel 0.61 0.40 0.56 -0.31 0.68* 

Stickiness of 
gel 

0.55 0.35 0.50 -0.33 -0.15 

V -0.55* -0.36 -0.31 0.27 -0.25 

AH.e 0.54* 0.51* 0.35 0.63** -0.52* 

^Values and description are listed in Wang et al (in press). 

^Values are from Fr. I of gel permeation chromatogram of isoamylase-debranched starch (Wang et al in press), 

c* and ** = Significant at P < 0.05 and P < 0.01 levels of probability, respectively. 

'kDnset temperature of gelatinization. 

^Enthalpy of gelatinziation. 
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Table VI. Correlations among selected physicochemical properties of starches from mutant genotypes of the 

Oh43 inbred line 

Swelling power Solubility Peak viscosity Firmness of gel Stickiness of 
gel 

Blue value .0.88**3 -0.07 •0.97** 0.55 0.50 

^max -0.98»* -0.55** -0.87** 0.80** 0.76* 

[Tl] 0.66** -0.17 0.93** -0.40 -0.37 

%T 0.99** 0.46* 0.90** -0.71* -0.66 

Swelling power 0.50** 0.92** -0.76* -0.71* 

a* and ** = Significant at P < 0.05 and P < 0.01 levels of probability, respectively. 
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PAPER IV 

CHARACTERIZATION OF AMYLOPECTIN AND INTERMEDIATE MATERIALS IN 

STARCHES FROM MUTANT GENOTYPES OF THE OH43 INBRED LINE 
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ABSTRACT 

The amylopectin (AP) and intermediate materials (IM) from five endosperm mutant genotypes in a 

common Oh43 inbred line were isolated and examined by using gel permeation chromatography (GPC), iodine 

affinity, blue value, and viscosity. The chain-length distributions of AP and IM were determined by using an 

enzymatic-chromatographic method. Each isoamylase-debranched AP and IM fraction exhibited characteristic 

GPC elution patterns. The degree of branching in the AP and IM was decreased when the amylose-extender (ae) 

gene was present, whereas the dull-1 (dul) gene produced AP and IM with the highest degrees of branching 

among the samples. The ae starch had significantly (P <0.01) longer long-B chains in the IM fraction than 

other starches, and the peak average chain length (CL) of long-B chains in the IM of ae starch was much longer 

than that of the AP fraction. There was no significant difference in the AP and IM fractions between the peak 

CL of long-B chains and A and short B-chains of brittle-1 (btl), dul, ae btl and ae dul starches. 

Physicochemical property measurements showed that the AP and IM from the same starch exhibited different 

properties in addition to different structural characteristics. It is evident that many facets of genetic background 

contribute to the fine structure and properties of AP and IM of different starches. 
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INTRODUCTION 

Starch is composed primarily of two components; amylose (AM), an essentially linear molecule; and 

amylopectin (AP), a highly branched molecule. The existence of a third component in normal maize starch with 

properties different from those of AM and AP, termed intermediate materials (IM), was first postulated by 

Lansky et al (1949). Banks and Greenwood (1975) suggested that the type and amount of IM depended primarily 

on the AM percentage of the starch, although it varied considerably among starches. 

The AM content in normal maize (Zea mays L.) starch ranges from 25 to 30% but can vary among 

cultivars and, especially, with the presence of mutant genes. Amylomaize, which contains the recessive mutant 

gene amylose-extender (ae), has an apparent AM contait of up to 80% (Banks and Greenwood 1975) and is 

associated with the presence of abnormal AP (Mercier 1973, Ikawa et al 1978, Boyer et al 1980, Ikawa et al 

1981). Wolff et al (1955) demonstrated that the AP fraction in a 50% amylomaize starch had longer inner and 

outer chains than did chains of normal AP. Some investigators (Banks and Greenwood 1968, Adkins and 

Greenwood 1969), however, proposed that the resulting abnormal AP came from contaminating short-chain 

AM. In contrast, Montgomery et al ( 1964), and Banks and Greenwood ( 1975) confirmed the proposal of Wolff 

et al (1955) that the AP in amylomaize starch was less highly branched than that of normal AP. 

More recently. Baba and Arai ( 1984) examined the fine structures of AP and IM in a 50% amylomaize 

starch. They found that the AP of amylomaize possessed an average chain-length (CL) that was 10 glucose 

units longer than that of waxy (h>;c) maize, and the IM had an average degree of polymerization (DP) of 250 to 

300 glucose units per molecule with four or five branches having a CL of around 50 glucose units. 

In addition to the ae gene, the combinations of a dull (du) or sugary-1 (sul) gene with other recessive 

mutant genes (except the wx gene) also produced starches with increased AM contents (Ikawa et al 1981, Yeh et 

al 1981, Inouchi et al 1983, 1987, Boyer and Liu 1985, Wang et al 1992). In a previous report (Wang et al 

1992), several mutant genotypes (ae, dul, ae brittle-1 \btl | and ae dul) were found to have increased AM content 

as well as increased IM. This study was undertaken to characterize the structures and the physicochemical 

properties of AP and IM from several mutant genotypes in an Oh43 inbred background to illustrate the 
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influences of recessive mutant genes on the starches. 
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MATERIALS AND METHODS 

Materials 

Mature kernels of single mutants [amylose-extender (ae), brittle-1 (W), and dull-1 (dul)] and double 

mutant combinations (ae btl and ae dul) from a common Oh43 inbred line were harvested from a summer 

nursery near Ames, Iowa, in 1991. Development of the genotypes and sampling and storing of the kernels were 

described previously (Wang et ai 1992). 

Isolation of Starch 

Starch was isolated by using a wet-milling procedure (Steinke and Johnson 1991). The isolated 

starches were purified by treating with five volumes of 0.2 M sodium chloride-tolune (5:1, v/v) at least five 

times, and, after each treatment, the starch granules were sedimented by centrifugation (8,7(X) X g). The final 

sediment was washed three times with distilled water and dried at 45°C for 24 hr. 

Separation of Amylopectin and Intermediate Materials 

Starch was fractionated according to the general procedure of Schoch ( 1942) and Jane and Chen (1992), 

and modified by Wang et al (1992). The fraction which did not complex with 1-butanol (butanol 

noncomplexing fraction, BNF) during fractionation was considered to include amylopectin (AP) and intermediate 

materials (IM) and was further purified by recrystallizing three times to remove contaminating amylose (AM). 

The supernatant precipitated with methanol was collected and redissolved in 90: 10 dimethyl sulfoxide 

(DMSO)/deionized water (Wang et ai 1992) for further study. The amount of BNF collected from different starch 

genotypes varied from 0.5 g to 4.0 g depending upon the availability of starch. 

An amount of 75 mg of BNF was fractionated on a Sepharose CL-2B column by following the 

procedure of Wang et ai (1992) except that 75 mg starch was loaded onto the column. Fractions (4.9 mL of 

effluent) were collected every 9.5 min and subjected to total carbohydrate and amylose content analyses by using 

the anthrone-sulfuric acid method (Wright and Gann 1966) and the iodine staining test (Juliano 1971), 
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respectively. The minimum value from iodine staining after elution of the first major fraction was used to 

identify the end of the eluted amylopectin and the rest of the effluent was considered to be IM. The 

corresponding fractions from AP and IM were pooled, condensed by vacuum evaporation, and precipitated with 

five volumes of methanol. The precipitates were separated by centrifuging at 8,700 X g for 20 min at 4''C, and 

then redissolved in 90:10 (v/v) dimethyl sulfoxide (DMSO)/deionized water. The same procedure was repeated 

many times to successively purify the IM from the AP fraction for all BNF samples. Previously, the separation 

of IM from AP was achieved by ultracentrifugation (Adkins and Greenwood 1966), by complexing with iodine 

(Adkins and Greenwood 1969), or by leaching (Banks et al 1971). It has been suggested that AP can be better 

separated from IM without interference from each other by using GPC (Baba and Arai 1984). 

Gel Permeation Chromatography of Isoamylase Debranched AP and IM 

The starch was prepared, debranched by isoamylase, fractionated on a Bio-Gel P-6 column, and assayed 

for total carbohydrate by using the anthrone-sulfuric acid method (Wright and Gann 1966) as described by Wang 

et al (1992). Crystalline Pseudimonas isoamylase was used (Hayashibara Shoji, Inc., Olayama, Japan). The 

eluted materials were separated into two fractions with the division being made at minimum points between the 

two major peaks according to the response of the polysaccharide. The average chain length (CL) of debranched 

starch also was calculated (Hizukuri et al 1981, Jane and Chen 1992). 

Physicochemical Properties of AP and IM 

The isolated AP and IM in DMSG of different mutant genotypes were characterized for their 

physicochemical properties. The blue value (BV) was determined according to Gilbert and Spragg (1964). Two 

separate determinations were done on each sample. 

The limiting viscosity number [t̂ ] was determined in 1 N KOH by using an Ostwald viscometer at 

22.5°C. The flow time was 124 sec for 1 N KOH. Three measurements were performed for each sample. 

Iodine affinity (lA), expressed as mg of iodine bound to 100 mg of starch, was determined with 

amperometric titration (Schoch 1964) at 30°C. Because of a limited sample size, only one determination was 
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made on some samples. 

Statistical Analyses 

Correlations were computed on the data of physicochemical properties among starch samples, and 

among starch properties and structural characteristics by using the SAS program (SAS Institute 1990). Least 

significant differences were computed at a significance level of P < 0.05. 
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RESULTS AND DISCUSSION 

Separation of Amylopectin and Intermediate Materials 

The butanol noncomplexing fraction (BNF) of starches from five maize mutant genotypes of Oh43 

inbred line were elated on the Sepharose CL-2B column and the profiles are presented in Fig. 1. The amylose 

extender {ae ) starch (Fig. lA) showed two major fractions, the brittle-1 (btl) and dull-1 (dul) starches (Figs. IB 

and IC, respectively) showed only one major fraction, and the ae btl and ae dul starches (Figs. ID and IF, 

respectively) exhibited three fractions. The first, and also the major, fraction in the elution profile was 

composed of highm molecular-weight (MW) molecules, which were considered to be amylopectin (AP), whereas 

the rest of the material was regarded as intermediate materials (IM), mainly containing low-MW molecules (Baba 

and Aral 1984). For ae btl and ae dul starches, the third fraction exhibited a greater blue-value (B V) response 

than did the second fraction, although the second fraction had a greater polysaccharide content than did the third 

fraction. This data suggests that the third fraction possessed longer branch chain lengths than did the second 

fraction (Bailey and Whelan 1961). The amounts of IM present in these five mutant genotypes were determined 

in a previous study (Wang et al 1992), and are listed in Table I. 

Individual Characterization of AP and IM 

The chromatograms of isoamylase-debranched AP and IM from the five maize mutant genotypes are 

presented in Fig. 2. To calculate the amount of materials in low- and high-MW fractions, each elution profile 

was divided into two fractions at the point of minimum BV between the two major peaks, and the average chain-

length (CL) at the apices of peaks from fraction I (Fr. I) and fraction II (Fr. II) and the percentage of Fr. I and Fr. 

II were determined (Table I). In the chromatograms for AP, Fr. I was assumed to include long B chains and Fr. 

II was composed of A and short-B chains (Hizukuri 1986). In the present study, the same designation of Fr. I 

and Fr. II was adopted for the IM. The ratio of Fr. II to Fr. I may be used as an index of the extent of 

branching, with the higher the ratio, the higher the degree of branching (Biliaderis et al 1981). Materials eluting 

at the beginning of all chromatograms, except for those of AP from ae and btl starches, was suspected to be 



www.manaraa.com

115 

contaminating amylose remaining after fractionation and was omitted from calculations of Fr. I and II. 

The elution profiles of debranched AP from ae, ae btl and ae dul starches were similar to each other 

(Figs. 2A, 2G and 21) with similar percentage compositions of Fr. I and Fr. II (Table I), whereas the AP of btl 

and dul had chromatograms similar to each other (Figs. 2C and 2E) in which the percentage of Fr. II was much 

greater than that of Fr. I (Table I). The elution patterns of debranched IM from the five samples were all 

different from each other (Figs. 2B, 2D, 2F, 2H and 21), suggesting a structural difference among IM of different 

starch genotypes. The elution patterns of the AP and IM from the same sample were similar to each other for 

btl, dul, and ae btl samples (Figs. 2 C & D, 2E & F and 2G & H, respectively), but were different for ae and 

ae dul samples (Figs. 2 A & B and 21 & J, respectively). The ae gene decreased the proportion of Fr. II in the 

IM more than in AP for ae and ae dul starches but this effect was not seen in ae btl starch. 

The ratios of Fr. II to Fr. I of debranched AP ranged from 1.5 for ae dul starch to 4.6 for btl starch, 

and of debranched IM from 0.6 for ae dul starch to 5.2 for dul starch (Table I). These low ratios for AP and IM 

from ae, ae btl and ae dul starches indicated low degrees of branching in these polysaccharides, resulting from 

the effect of the ae gene (Wang et al 1992). Moreover, the ae gene decreased the degree of branching more on the 

IM than on the AP. In contrast, the high ratios (Fr. II to Fr. I) of AP and IM of dul starch suggested the 

presence of highly branched molecules, which agrees with a previous report (Wang et al 1992). The ratio of Fr. 

II to Fr. I in the AP was slightly higher than that in the IM for the same starch, except for dul starch, indicating 

that the IM was generally more lightly branched than was the AP for the same starch. These findings agree with 

previous reports (Banks and Greenwood 1975, Baba and Arai 1984) 

The peak CL of Fr. I for the AP varied from 37 for dul starch to 73 for ae starch, and for the IM ranged 

from 38 for btl starch to 177 glucose units for ae starch (Table I). The peak CL of Fr. II for the AP and the IM 

were similar to each other, ranging from 14 to 26 glucose units. For the ae starch, the peak CL at Fr. I of the 

IM was significantly (P < 0.01) longer than that of the AP. No significant differences (P < 0.05) were noted 

between the peak CL (Fr. I) of the IM and of the AP for btl, dul, ae btl and ae dul starches. For Fr. II, no 

significant differences (P < 0.05) were noted between the peak CL of the AP and the IM for all starches. The ae 

starch had the longest peak CL at Fr. I for both AP and IM of all starches. 
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The influence of the ae gene on the fine structure of AP has been extensively studied. It is evident that 

the AP fi'om amylomaize has a unique structure, with a longer CL than does the AP of normal and waxy maize 

(Wolff et al 1955, Montgomery et al 1964, Mercier 1973). When combined with other genes, however, (in ae 

bll and ae dul) the ae gene had less impact on the fine structure of the starches. Similarly, the high degree of 

branching in AP usually associated with the dul gene was not apparent in ae dul starch. These results 

suggested that the combination of two mutant genes created additional modifications in starch structure. 

Physicochemical Properties of AP and IM 

The physicochemical properties of isolated AP and IM, including BV, limiting viscosity number [T|], 

and iodine affinity (lA), are summarized in Table II. The ae and ae dul starches exhibited higher B V than did 

other starches in both AP and IM components, reflecting the strong binding of AP and IM with iodine and 

suggesting their long branch chains. The ae btl starch did not have a high BV although it previously exhibited 

high BV response during fractionation on GPC (Fig. ID). The IM gave a higher BV than did the AP in ae and 

ae dul starches, there was no difference in the BV of AP and IM for btl starch, and the AP had a higher BV than 

did the IM for dul and ae btl starches (P < 0.05). The results indicate that structural differences resulting in 

different iodine binding abilities exist among the AP and among the IM, and also between the AP and IM. 

Differences between the [t|] of AP and IM fractions were observed. All AP fractions exhibited 

significantly (P < 0.01) greater than did the IM fractions, suggesting that the IM contained smaller 

molecules than did the AP. The AP and IM fractions of btl and dul starches had greater [t]] values than did the 

respective fractions of ae and ae dul starches. There were no significant differences (P < 0.05) in lA between AP 

and IM for btl, dul and ae btl starches. The IM of ae starch had a much greater lA than did the AP of the same 

starch. Although some contaminating amylose appeared in the AP and IM, the great discrepancy in lA between 

AP and IM factions of ae starch suggested structural differences in the CL of the AP and IM of ae starch. Baba 

and Aral (1984) also observed similar results in 50% amylomaize starch. 

Correlations were run among structural characteristics, including ratios of Fr. II to Fr. I, peak CL at Fr. 

I and peak CL at Fr. II, and physicochemical properties (Table III). Although some correlations were expected. 
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e.g. between lA and peak CL of Fr. I, and between lA and BV, the correlations did not account for all of the 

variation and low correlations among other parameters may be important. The results suggest that other 

structural characteristics such as the molecular arrangement of AP and IM and the distribution of AP and IM 

within the starch granule, may also have a great effect on the physicochemical properties of starches. 
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CONCLUSIONS 

The different physicochemical properties observed in the AP and IM of five mutant genotypes likely 

reflected the structural differences in these starch fractions. Each AP and IM fraction exhibited a characteristic 

GPC chromatogram for the native and debranched starches. The results also suggest that the fine structures of 

AP and IM within a starch type are different from each other and are affected by the genetic background. The 

presence of another recessive mutant gene influenced the expression of the existing gene with respect to both 

structure and properties of the starch components. 
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Table I. Percentage compositions of polysaccharides® and chain length distribution® of debranched amylopectin 

and intermediate materials from five mutant genotypes of the Oh43 inbred line 

Starch 
component 

Intermediate 
materials 

(%P 

Fraction I 
(Fr.I) 

Fraction n 
(Fr.II) 

Ratio of 
Fr. II/Fr. I 

Peak average 
chain length of 

Fr. I 

Peak average 
chain length 

of Fr.II 

39.2 60.8 1.6 73 26 
(0.3) (0.3) (0) (3) (4) 

15.3 60.1 39.9 0.6 177 26 
(0.2) (0.2) (0) (8) (7) 

6/i-AP 21.2 78.8 3.7 55 16 
(0.5) (0.5) (0.1) (10) (0) 

btl-lU 1.8 22.3 77.7 3.5 38 20 
(0.2) (0.2) (0) (8) (0) 

dul-AP 17.8 82.2 4.6 37 17 
(0.2) (0.2) (0.1) (2) (5) 

dul-M. 15.2 16.0 84.0 5.2 51 14 
(0.2) (0.2) (0.1) (2) (3) 

ae btl-AP 35.9 64.1 1.8 50 18 
(0.1) (0.1) (0) (4) (0) 

ae btl-JM 22.5 37.6 62.4 1.7 52 21 
(0.3) (0.3) (0) (19) (5) 

ae dul-AP 39.9 60.1 1.5 56 23 
(1.2) (1.2) (0.1) (3) (3) 

aedul-IM. 18.9 56.9 43.1 0.8 55 23 
(2.0) (2.0) (0.1) (5) (4) 

LSDO.05 0.1 18 8 

®Values are the average of two separate determinations. Standard deviations (SD) are listed immediately below. 

''Percentage composition of intermediate materials in starch. Data are adapted from Wang et al (1992) Table I. 

(^Amylopectin. 

^Intermediate materials. 
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Table H. Physicochemical properties^ of amylopectin and intermediate materials from five mutant genotypes of 

the Oh43 inbred line background 

Sample Blue value Ml (mL/g)b Iodine affinity 

ae-AP^ 0.277 ± 0.006 124 ±3 2.8 

0.318 ± 0.007 70±4 6.1 

btl-AP 0.164 ±0.002 137 ±2 1.6e 

btl-m 0.162 ±0.001 82 ±0 2.08 

dul-AP 0.186 ±0.005 142 ±2 1.7 

dul-lM 0.155 ± 0.010 80 ± 1 2.2 

ae btl-AP 0.189 ± 0.004 ...f l.Oe 

ae btl-ltA. 0.159 ± 0.001 _f l.ie 

ae dul-AP 0.252 ± 0.008 127 ± 1 _.f 

ae dul-JM 0.304 ± 0.001 50 ± 1 _.f 

LSDO.05 0.011 6 —g 

^Values are the average ± standard deviation of two separate determinations except for [T|] which is the average of 

three determinations. 

^Limiting viscosity number. 

^Amylopectin. 

^Intermediate materials. 

®One measurement. 

^Not determined. 

SValue not available due to lack of replication. 
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Table in. Correlations between structural characteristics and physicochemical properties of amylopectin and 

intermediate materials from five mutant genotypes of the Oh43 inbred line 

Peak CL» of 
firaction I 

Peak CL of 
fraction n 

Blue value [T|]b Iodine affinity 

Ratio of fraction 
n/ fraction I 

Peak CL of 
fraction I 

Peak CL of 
fraction n 

Blue value 

-0.35*c -0.70** 

0.26* 

-0.69** 

0.45** 

0.62** 

0.38** 

-0.21 

-0.21 

-0.45** 

-0.26 

0.89** 

0.55** 

0.87** 

[h] -0.58** 

^Average chain length. 

^Limiting viscosity number. 

(^* and ** = Significant at P < 0.05 and P < 0.01 levels of probability, respectively. 
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Figure 1. Elution profile on Sepharose CL-2B column of butanol noncomplexing fractions from five mutant 

genotypes. A. ae starch, B. btl starch, C. dul starch, D. ae btl starch, E. ae dul starch. Where BV 

= blue value response and total CHO = total polysaccharide value. 
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Figure 2. Elution profile of isoamylase-debranched starch from amylopectin (AP) and intermediate materials 

(IM) of five mutant genoytpes om Bio-Gel P-6 column. A. AP of ae starch, B. IM of ae starch, C. 

AP of btl starch, D. IM of bll starch, E. AP of dul starch, F. IM of dul starch, G. AP of ae bt 1 

starch, H. IM of ae btl starch, I. AP of ae dul starch, J. IM of ae dul starch. 
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GENERAL CONCLUSIONS 

The starches isolated from various mutant genotypes of the Oh43 inbred line were characterized and 

correlated for their structures and physicochemical properties. Each genotype exhibited different structural 

characteristics as well as physicochemical properties. The characteristic elation patterns from GPC were 

observed for native and isoamylase-debranched starches from the different starches. Distinctive morphology and 

properties further supported the existence of differences in fine structure. When one recessive mutant gene was 

combined with another mutant gene, additional modifications in structure and property were created. 

For thermal properties determined by using DSC, most double mutants showed higher onset 

temperature and enthalpy for gelatinization, and lower onset temperature for rétrogradation than those of their 

respective single mutants. The DSC might be used as a rapid screening method to select mutants with special 

thermal properties. For gel strength, double mutants generally gave lower gel strength measurements than 

single mutants. The starches with low Tq {btl) and/or AH {dul and iul) could be used as alternatives to save 

energy. The starches with high or low gel strength measurements might be potentially used in paper or 

confectionery industry, respectively. 

Starches containing the ae gene had high amylose contents and were also associated with increased 

intermediate material contents. Low degrees of branching in the amylopectin and intermediate materials were 

observed in ae-containing starches. In contrast, a high degree of branching was found in starches with dul and/or 

sul genes. The proportion of long B chains and the average chain lengths of amylopectin and intermediate 

materials were increased when the ae gene was present, whereas the presence of the dul gene decreased the 

proportions of the long B chains. The starch components from different genetic backgrounds may be unique 

although they all are polymolecular and polydisperse. The SEM micrographs demonstrated the differences in 

size and morphology among starches. Some starches had an average granule size of around S |xm (similar to 

that of rice starch granule), which might have special applications in specialized photographic paper, and in the 

laundry industry (Juliano 1984). 

Amylose content was the most important structural characteristic affecting the physicochemical 
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properties; however, other structural characteristics such as the arrangement of amylopectin molecules, and the 

distribution of amylose, intermediate materials and amylopectin relative to each other within the starch granule 

also affected the physicochemical properties. The dul starch showed lower viscosities than those of normal 

starch on viscoamylograms, which has not been previously reported and might have practical potential. The %T 

correlated well with peak viscosity on the viscoamylograms and might be used as an easy screening technique 

for starch with desired textural characteristics. 

Some genes had more important roles than others in determining the structures and properties of 

starches, although the interactions between different mutant genes were clear. Naturally occurring maize 

mutants provide a variety of novel starches which potentially may be used without further processing or with 

minimal modification to replace generally expensive, chemically-modified starches. 



www.manaraa.com

128 

LITERATURE CITED 

AKAI, H., YOKOBAYASHI, K., MISAKI, A. and HARADA, T. 1971. Structural analysis of amylopectin 

using Pseudomonas isoamylase. Biochim. Biophys. Acta. 252:427. 

ATWELL, W. A., HOOD, L. R, LINEBACK, D. R., VARRIANO-MARSTON, E., and ZOBEL. H. R 1988. 

The terminology and methodology associated with the basic starch phenomena. Cereal Foods World 

33:306. 

BABA, T., and ARAI, Y. 1984. Structural characterization of amylopectin and intermediate material in 

amylomaize starch. Agric. Biol. Chem. 48:1763. 

BANKS, W., and GREENWOOD. C. T. 1966. The fine structure of amylose: The action of pullulanase as 

evidence of branching. Arch. Biochem. Biophys. 117:674. 

BANKS, W., and GREENWOOD, C. T. 1967. Physicochemical studies on starches. Part XXXII. The 

incomplete B-amylolysis of amylose: A discussion of its cause and implications. Starch/Staerke 19:197. 

BANKS, W., and GREENWOOD, C. T. 1968. Physico-chemical studies on starches. Part XXXIV. The 

distribution of molecular weight in amylose samples obtained by the leaching and the dispersion of potato 

starch. Carbohydr. Res. 6:171. 

BANKS, W., and GREENWOOD, C. T. 1975. Fractionation of the starch granule, and the fine structures of its 

components. Pages 5-66 in: Starch and Its Components. Edinburgh University Press: Edinburgh. 

BANKS, W., GREENWOOD, C. T., and MUIR, D. D. 1974. Studies on starches of high amylose content. 

Part 17. A review of current concepts. Starch/Staerke 26:289. 

BLACK, R. C., LOERCH, J. D., MCARDLE, F. J., and CREECH, R. G. 1966. GeneUc interactions 

affecting maize phytoglycogen and the phytoglycogen-forming branching enzyme. Genetics 53:661. 

BOYER, C. D., and LIU, K. -C. 1985. The interaction of endosperm genotype and genetic background. Part 1. 

Differences in chromatographic profiles of starches from nonmutant and mutant endosperms. Starch/Staerke 

37:73. 

BOYER, C. D., and PREISS, J. 1978. Multiple forms of (l->4)-a-D-glucan, (l->4)-a-D-gIucan-6-glycosyl 

transferase from developing Zea mays L. kernels. Carbohydr. Res. 61:321. 

BOYER, C. D., GARWOOD, D. L., and SHANNON, J. C. 1976. The interaction of the amylose-extender and 

waxy mutants of maize {Zea mays L.). Starch/Staerke 28:405. 

BRAMMER, G. L., ROUGUIVE, M. A., and FRENCH, D. 1972. Distribution of a-amylase-resistant regions 

in the glycogen molecule. Carbohydr. Res. 24:343. 

BROWN, R. P., CREECH, R. G., and JOHNSON, L. J. 1971. Genetic control of starch granule morphology 

and physical structure in developing maize endosperms. Crop Sci. 297. 

COLLISON, R., and ELTON, G. A. H. 1961. Some factors which influence the rheological properties of starch 



www.manaraa.com

129 

gels. Starch/Staerke 13:164. 

COLONNA, P., and MERCIER, C. 1984. Macromolecular structure of wrinkled- and smooth-pea starch 

components. Carbohydr. Res. 126:233. 

COLONNA, P., BITON, V., and MERCIER, C. 1985. Interactions of Concanavalin A with a-D-glucans. 

Carbohydr. Res. 137:151. 

COLONNA, P., BULEON, A., LEMAGEUR, M., and MERCIER, C. 1982. Pisum sativum and Vicia faba 

carbohydrates: Part IV- Granular structure of wrinkled pea starch. Carbohydr. Polym. 2:43. 

CREECH, R. G., and MCARDLE, F. J. 1966. Gene interaction for quantitative changes in carbohydrates in 

maize kernels. Crop Sci. 6:192. 

DAIS, P., and PERLIN, A. 1982. High-field, ^^C-N.M.R. spectroscopy of B-D-glucans, amylopectin, and 

glycogen. Carbohydr. Res. 100:103. 

D'APPOLONIA, B. L. and MORAD, M. M. 1981. Bread staling. Cereal Chem. 58:186. 

DICKINSON, D. B. and PREISS, J. 1969. Presence of ADP-glucose pyrophosphorylase in shrunken-2 and 

brittle-2 mutants of maize endosperm. Plant Physiol. 44:1058. 

DVONCH, W., KRAMER, H. H., and WHISTLER, R. L. 1951. Polysaccharides of high-amylose com. Cereal 

Chem. 28:270. 

ERLANDER, S. R., and FRENCH, D. 1958. Acid hydrolysis and molecular weight of various com 

amylopectin and glycogen. J. Polymer Sci. 32:291. 

FRENCH, D. 1972. Fine structure of starch and its relationship to the organization of starch granules. J. Japan. 

Soc. Starch Sci. 19:7. 

FRENCH, D. 1973. Chemical and physical properties of starch. J. Anim. Sci. 37:1048. 

FUWA, H., GLOVER. D. V., MIYAURA, K., INOUCHI, N., and SUGIMOTO. Y. 1987. Chain length 

distribution of amylopectins of double- and triple-mutants containing the waxy gene in the inbred Oh43 

maize background. Starch/Staerke 39:295. 

FUWA, H., SUGIMOTO, Y., TANAKA, M., and GLOVER. D. V. 1978. Susceptibility of various starch 

granules to amylases as seen by scanning electron microscope. Starch/Staerke 30:186. 

GARWOOD. D. L., and CREECH, R. G. 1972. Kernel phenotypes of Zea mays L. genotypes possessing one 

to four genes. Crop Sci. 12:119. 

GEDDES, R., and GREENWOOD, C. T. 1969. Observations on the biosynthesis of the starch granule. 

Starch/Staerke 21:148. 

GUILBOT. A., and MERCIER, C. 1985. Starch, p.233. in: The Polysaccharides. Vol.3 Aspinall, G. ed. 

Academic Press: London. 

HALL, D. M.. and SAYRE, J. G. 1969. A scanning electron-microscope study of starches. Part I. Root and 

tuber starches. Textile Res. J. 39:1044. 



www.manaraa.com

130 

HALL, D. M., and SAYRE, J. G. 1970. A scanning electron-microscope study of starches. II. Cereal starches. 

Textile Res. J. 40:257. 

HALL, D. M., and SAYRE, J. G. 1971. A scanning electron-microscope study of starches. III. Miscellaneous 

starches. Textile Res. J. 41:880. 

HILL, R. D. and DRONZEK, B. L. 1973. Scanning electron microscopy studies of wheat, potato and com 

starch during gelatinization. Starch/Staerke 22:56. 

HIZUKURI, S. 1986. Polymodal distribution of the chain lengths of amylopectin, and its significance. 

Carbohydr. Res. 147:342. 

HIZUKURI, S., and MAEHARA, Y. 1990. Fine structure of wheat amylopectin: the mode of A to B chain 

binding. Carbohydr. Res. 206:145. 

HIZUKURI, S., and TAKAGI, T. 1984. Estimation of the distribution of molecular weight for amylose by the 

low-angle laser-light-scattering technique combined with high-performance gel chromatography. Carbohydr. 

Res. 134:1. 

HIZUKURI, S., TAKEDA, Y., and YASUDA, M. 1981. Multi-branched nature of amylose and the action of 

debranching enzymes. Carbohydr. Res. 94:205. 

HOLDER, D. G., GLOVER, D. V., and SHANNON, J. C. 1974. Interaction of sh2 with five other 

carbohydrate genes in com endosperm. Crop Sci. 14:643. 

HOSENEY, R. C., ATWELL, W. A., and LINEBACK, D. R. 1977. Scanning electron microscopy of starch 

isolated from baked products. Cereal Foods World 22:56. 

INOUCHI, N., GLOVER, D. V., TAKAYA, T., and FUWA, H. 1983. Development changes in fine structure 

of starches of several endosperm mutants of maize. Starch/Staerke 35:371. 

INOUCHI, N., GLOVER, D. V., and FUWA, H. 1987. Chain length distribution of amylopectins of several 

single mutants and the normal counterpart, and sugary-1 phytoglycogen in maize (Zea mays L.). 

Starch/Staerke 39:259. 

INOUCHI, N., GLOVER, D. V., SUGIMOTO, Y., and FUWA, H. 1991a. DSC characteristics of 

gelatinization of starches of single-, double-, and triple-mutants and their normal counterpart in the inbred 

Oh43 maize {Zea mays L.) background. Starch/Staerke 43:468. 

INOUCHI, N., GLOVER, D. V.. SUGIMOTO, Y., and FUWA, H. 1991b. DSC characteristics of retrograded 

starches of single-, double-, and triple-mutants and their normal counterpart in the inbred Oh43 maize {Zea 

mays L.) background. Starch/Staerke 43:473. 

JANE, J., XU, A., RADOSAVUEVIC, M., and SEIB, P. A. 1992. Location of amylose in normal starch 

granules. I. Susceptibility of amylose and amylopectin to cross-linking reagents. Cereal Chem. 69:405. 

JASKA, E. 1971. Starch gelatinization as detected by proton magnetic resonance. Cereal Chem. 48:437. 

JULIANO, B. 0.1984. Rice starch: Production, properties, and uses. Pages 507-528 in: Starch: Chemistry and 



www.manaraa.com

131 

Technology. R.L. Whistler, J.N. BeMiller and E.F. Paschall, eds. Academic Press; Orlando, FL. 

KASEMSUWAN, T. 1991. Locations of amylose in normal com starch revealed by phosphodiester cross-

linking and phosphorus-31 NMR. Master Thesis. Iowa State Univ. Ames, lA. 

KASEMSUWAN, T., and JANE, J. 1991. Location of amylose in native com starch revealed by phosphodiester 

cross-linking and ^^PNMR. Abstr. 155. Cereal Foods World. 36:702. 

KOIZUMI, K., FUKUDA, M., and HIZUKURI, S. 1991. Estimation of the distribution of chain length of 

amylopectins by high-performance liquid chromatography with pulsed amperometric detection. J. Chrom. 

585:233. 

KRAMER, H. H., and WHISTLER, R. L. 1949. Quantitative effects of certain genes on the amylose content 

of com endosperm starch. Agron. J. 41:409. 

KRAMER, H. H., PFAHLER, R. L., and WHISTLER, R. L. 1958. Gene interactions in maize affecting 

endosperm properties. Agron. J. 50:207. 

LANGAN, R. E. 1986. Food industry. Pages 199-212 in: Modified Starches: Properties and Uses. O.B. 

Wurzburg, ed. CRC Press: Boca Raton, FL. 

LANSKY, S., KOOI, M., and SCHOCH, T. J. 1949. Properties of the fractions and linear subfactions from 

various starches. J. Amer. Chem. Soc. 71:4066.. 

LAUGHNAN, J. R. 1953. The effect of the sh2 factor on carbohydrate reserves in the mature endosperm of 

maize. Genetics 38:485. 

LEACH, H. W., MCCOWEN. L. D., and SCHOCH, T. J. 1959. Structure of the starch granule. I. Swelling 

and solubility patterns of various starches. Cereal Chem. 36:534. 

LEACH, H. W., and SCHOCH, T. J. 1961. Structure of the starch granule. II. Action of various amylases on 

granular starches. Cereal Chem. 38:34. 

LINEBACK, D. R. 1984. The starch granule: Organization and properties. Bakers Digest 58:16. 

LINEBACK, D. R., and WONGSRIKASEM, E. 1980. Gelatinization of starch in baked products. J. Food Sci. 

45:71. 

LONGLEY, R. W., and MILLER, B. S. 1971. Note on the relative effects of monoglycerides on the 

gelatinization of wheat starch. Cereal Chem. 48:81. 

MANNERS, D. J., and MATHESON, N. K. 1981. The fine structure of amylopectin. Carbohydr. Res. 90:99. 

MILLER, B. S., DERBY, R. I., and TRIMBO, H. B. 1973. A pictorial explanation for the increase in 

viscosity of a heated wheat starch-water suspension. Cereal Chem. 50:271. 

MONTGOMERY, E. M., SEXTON, K. R., and SENTI, F. R. 1961. High-amylose com starch fractions. 

Starch/Staerke 13:215. 

MOORE, C. O., TUSCHHOFF, J. V., HASTINGS. C. W., and SCHANEFELT, R. V. 1984. Pages 575-591 

in: Starch: Chemistry and Technology. R.L. Whistler, J.N. BeMiller and E.F. Paschall, eds. Academic 



www.manaraa.com

132 

Press: Orlando, FL. 

NAKAZAWA, P., NOGUCHI, S., TAKAHASHI, J., and TAKADA, M. 1985. Rétrogradation of gelatinized 

potato starch studied by differential scanning calorimetry. Agric. Biol. Chem. 49:953. 

NELSON, O. E., CHOUREY, P. S., and CHANG, M. T. 1978. Nucleoside diphosphate sugar-starch 

glucosyltransferase activity of wx starch granules. Plant Physiol. 62:383. 

NEUFFER, M. G., JONES, L., and ZUBER, M. S. 1968. in; The mutants of Maize. Crop. Sci. Soc. Amer.; 

Madison, WI. 

NIKUNI, Z. 1978. Studies on starch granules. Starch/Staerke 30:105. 

NINOMYA, Y., OKUNO, K., GLOVER, D. V., and FUWA, H. 1989. Some properties of starches of sugary-

1; brittle-1 maize {Zea mays L.). Starch/Staerke 41:165. 

PATEL, N. B., and KALE, N. R. 1973. Quantitative separation of starch components on a cellulose column. J. 

Chromatogr. 84:75. 

PEAT, S., PIRT, S. J., and WHELAN, W. J. 1952. Enzymic synthesis and degradation of starch. Part XV. B-

amylase and the constitution of amylose. J Chem. Soc. 705. 

PEAT, S., WHELAN, W. J., and PERT, S. J. 1949. The amylolytic of soya bean. Nature 164:499. 

PEAT, S., WHELAN, W. J., and THOMAS, G. J. 1956. The enzymic synthesis and degradation of starch. Part 

XXII. Evidence of multiple branching in waxy-maize starch. A correction. J. Chem. Soc. 3025. 

POOLE, C. F., and SCHUETTE, S. A. 1986. The column in liquid chromatography. Pages 213-351. in: 

Contemporary practice of chromatography. Elsevier Science Publishing: New York. 

ROBERTS, P. J. P., and WHELAN, W. J. 1960. The mechanism of carbohydrate action. 5. Action of human 

salivary a-amylase on amylopectin and glycogen. Biochem. J. 76:246. 

ROBIN, J. P., MERCIER, C., CHARBONNIERE, and GUILBOT, A. 1974. Lintnerized starches. Gel 

filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal 

Chem. 51:389. 

ROBYT, J. F. 1984. Enzymes in the hydrolysis and synthesis of starch. Pages 87-123 in: Starch: Chemistry 

and Technology. R.L. Whistler, J.N. BeMiller and E.F. Paschall, eds. Academic Press: Orlando, FL. 

RUTENBERG, M. W., and SOLAREK, D. 1984. Starch derivatives: Production and uses. Pages 311-388 in: 

Starch: Chemistry and Technology. R.L. Whistler, J.N. BeMiller and E.F. Paschall, eds. Academic Press: 

Orlando, FL. 

S AIR, L. 1967. Heat-moisture treaUnent of starch. Cereal Chem. 44:8. 

SANDERS, E. B., THOMPSON, D. B., and BOYER, C. D. 1990. Thermal behavior during gelatinization and 

amylopectin fine structure for selected maize genotypes as expressed in four inbred lines. Cereal Chem. 

67:594. 

SCHIEFER, S., LEE, E. Y. C., and WHELAN, W. J. 1973. Multiple forms of starch synthetase in maize 



www.manaraa.com

133 

varieties as revealed by disc-gel electrophoresis and activity staining. FEB Letters 30:129. 

SCHOCH, T. J. 1945. The fractionation of starch. Adv. Carbohydr. Chem. 1:247. 

SCHOCH, T. J. 1964. lodimetric determination of amylose. Methods Carbohydr. Chem. 4:157. 

SCHOCH, T. J., and FRENCH, D. 1947. Studies on bread staling. I. The role of starch. Cereal Chem. 24:231. 

SECKINGER, H. L., and WOLF, M. J. 1966. Polarization colors of maize starches varying in amylose content 

and genetic background. Starch/Staerke 18:1. 

SHANNON, J. C., and GARWOOD, D. L. 1984. Genetics and physiology of starch development. Pages 25-86 

in: Starch; Chemistry and Technology. Academic Press: Orlando, FL. 

SHETTY, R. M., LINEBACK, D. R., and SEIB, P. A. 1974. Determining the degree of starch gelatinization. 

Cereal Chem. 51:364. 

SHUEY, W. C., and TIPPLES, K. H. 1980. The Amylograph Handbook. Amer. Assoc. Cereal Chem.: MN. 

SMITH, R. J. 1964. Viscosity of starch pastes. Methods Carbohydr. Chem. 4:114. 

STEVENS, D. J., and ELTON, G. A. H. 1971. Thermal properties of the starch/water system. Part 1. 

Measurement of heat of gelatinization by differential scanning calorimetry. Starch/Staerke 23:8. 

SUZUKI, A., HIZUKURI, S., and TAKEDA, Y. 1981. Physicochemical studies of kuzu starch. Cereal Chem. 

58:286. 

TAKEDA, Y., HIZUKURI, S., and JULIANO, B. 0.1986. Purification and structure of amylose from rice 

starch. Carbohydr. Res. 148:299. 

TAKEDA, Y., HIZUKURI, S., and JULIANO, B. 0. 1987. Structures of rice amylopectins with low and high 

affmities for iodine. Carbohydr. Res. 168:79. 

TAKEDA, C., TAKEDA, Y., and HIZUKURI, S. 1983. Physicochemical properties of lily starch. Cereal 

Chem. 60:212. 

TAKEDA, C., TAKEDA, Y., and HIZUKURI, S. 1989a. Structure of amylomaize amylose. Cereal Chem. 

66:22. 

TAKEDA, Y., HIZUKURI, S., and JULIANO, B. 0.1989b. Structures and amounts of branched molecules in 

rice amylose. Carbohydr. Res. 186:163. 

TSAI, C. Y. 1974. The function of the waxy locus in starch synthesis in maize endosperm. Biochem. Genet. 

11:83. 

TSAI, C. -Y. and NELSON, O. E. 1966. Starch-deficient maize mutant lacking adenosine diphosphate glucose 

pyrophosphorylase activity. Science 151:341. 

WATSON, S. A. 1964. Determination of starch gelatinization temperature. Methods Carbohydr. Chem. 4:240. 

WHELAN, W. J. 1963. Recent advances in starch metabolism. Starch/Staerke 15:247. 

WHISTLER, R. L. 1965. Vol. I, p. 331. in: Starch: Chemistry and Technology. R. L., Whistler, and E. F., 

Paschall, eds. Academic Press: New York. 



www.manaraa.com

134 

WHISTLER, R. L., and DANIEL, J. R. 1985. Carbohydrate. Pages 69-137 in: Food Chemistry. O R. 

Fennema, ed. Marcel Dekker: New York. 

WILKES, G. L. 1974. Rheo-optical methods and their application to polymeric solids. J. Macromol. Sci. 

Macromol. Chem. CIO: 149. 

WOLF, M. J., SECKINGER, H. L., and DIMLER, R. J. 1964. Microscopic characteristics of high-amylose 

com starches. Starch/Staerice 16:375. 

WURZBURG, O. B. 1986. Introduction. Page 13 in: Modified Starches: Properties and Uses. O.B. Wurzburg, 

ed. CRC Press: Boca Raton, FL. 

YAMADA, T., KOMI Y A, T., AKAKI, M., and TAKI, M. 1978. A novel type of com starch from a strain of 

maize. Part 3. The properties of the starch from amylo-waxy maize and its hybrids with waxy maize. 

Starch/Staerke 30:145. 

YEH, J. Y., GARWOOD, D. L., and SHANNON, J. C. 1981. Characterization of starch from maize 

endosperm mutants. Starch/Staerke 33:222. 

ZOBEL, H. F. 1984. Gelatinization of starch and mechanical properties of starch paste. Pages 285-309. in: 

Starch: Chemistry and Technology. R.L. Whistler, J.N. BeMiller, and E.F. Paschall, eds. Academic Press: 

New York. 

ZOBEL, H. F., YOUNG, S. N., and ROCCA, L. A. 1988. Starch gelatinization: An X-ray diffraction study. 

Cereal Chem. 65:443. 

ZUBER, M. S., and DARRAH, L. L. 1987. Breeding, genetics, and seed com production. Pages 31-51 in: 

Com: Chemistry and Technology. S. A. Watson and P.E. Ramstad, eds. Amer. Assoc. Cereal Chem.:: 

MN. 



www.manaraa.com

135 

ACKNOWLEDGMENTS 

I am most grateful to my major professor. Dr. Pamela J. White, for her guidance, encouragement and 

patience that made my studies at Iowa State University an enjoyable and memorable experience. She helped me 

to see the best no matter in what situations and to appreciate what I am. Special thanks are to Dr. Jay-lin Jane 

for her advice and kindly allowing me to use her equipment throughout my study, and to Dr. Linda Pollak for 

her support and providing me the com samples. Thanks also go to my committee members, Dr. Lawrence 

Johnson and Dr. Patricia Murphy, for their guidance and supervision. 

Sincere appreciation to all my friends, especially to Jen-Fang Chen and Luzhen Shen, for sharing the 

good times and the bad times in the laboratory together. Hsin-Chi Huang also deserves a credit for his support 

and love. 

My deepest thanks are to my parents whose unconditional love and support strengthened me to have 

the confidence to complete my graduate study. 


	1992
	Characterization of starch structures and properties of maize mutants from the Oh43 inbred line
	Ya-Jane Wang
	Recommended Citation


	tmp.1416722789.pdf.iQOtq

